• 제목/요약/키워드: infilled RC frames

검색결과 53건 처리시간 0.03초

Application of GMDH model for predicting the fundamental period of regular RC infilled frames

  • Tran, Viet-Linh;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • 제42권1호
    • /
    • pp.123-137
    • /
    • 2022
  • The fundamental period (FP) is one of the most critical parameters for the seismic design of structures. In the reinforced concrete (RC) infilled frame, the infill walls significantly affect the FP because they change the stiffness and mass of the structure. Although several formulas have been proposed for estimating the FP of the RC infilled frame, they are often associated with high bias and variance. In this study, an efficient soft computing model, namely the group method of data handling (GMDH), is proposed to predict the FP of regular RC infilled frames. For this purpose, 4026 data sets are obtained from the open literature, and the quality of the database is examined and evaluated in detail. Based on the cleaning database, several GMDH models are constructed and the best prediction model, which considers the height of the building, the span length, the opening percentage, and the infill wall stiffness as the input variables for predicting the FP of regular RC infilled frames, is chosen. The performance of the proposed GMDH model is further underscored through comparison of its FP predictions with those of existing design codes and empirical models. The accuracy of the proposed GMDH model is proven to be superior to others. Finally, explicit formulas and a graphical user-friendly interface (GUI) tool are developed to apply the GMDH model for practical use. They can provide a rapid prediction and design for the FP of regular RC infilled frames.

육각형 블록을 이용한 채움벽 RC 골조의 채움벽 내진성능평가 (Seismic Performance Evaluation of Hexagonal Blocks Infilled RC Frames)

  • 장극관;서대원;고태현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권4호
    • /
    • pp.116-124
    • /
    • 2011
  • 일반적으로 조적조는 시공이 용이하고 경제적인 구조로서 국내뿐만 아니라 해외에서도 가장 오래되고 광범위하게 사용되는 구조이다. 조적벽을 RC 골조에 장막벽으로 사용하는 채움벽 형태의 구조는 시공이 용이하고 경제적이기 때문에 저층 주거용 건물, 학교건물 등에 많이 적용되고 있으나, 설계시에는 비구조부재로 취급되어 채움벽의 효과를 반영하지 않고 있다. 본 연구에서는 기존의 사각형 조적개체의 횡력에 대한 취약성을 개선하기 위해 개발된 육각형 블록을 RC 골조 채움벽에 적용한 채움벽 골조에 대한 구조실험을 수행하여 육각형블록 조적채움벽의 효과를 평가하고자 하였다.

Analysis of behavior of bare and in-filled RC frames subjected to quasi static loading

  • Sandhu, Balvir;Sharma, Shruti;Kwatra, Naveen
    • Structural Engineering and Mechanics
    • /
    • 제73권4호
    • /
    • pp.381-395
    • /
    • 2020
  • Study on the inelastic response of bare and masonry infilled Reinforced Concrete (RC) frames repaired using Carbon Fibre Reinforced Polymers (CFRP) and Glass Fiber Reinforced Polymers (GFRP) subjected to quasi- static loading is presented in the work. The hysteresis behaviour, stiffness retention, energy dissipation and damage index are the parameters employed to analyze the efficacy of FRP strengthening of bare and brick in-filled RC frames. It is observed that there is a significant improvement in load carrying capacity of brick infilled frame over bare RC frame. Also FRP strengthened brick infilled frame performs much better than FRP repaired bare frame under quasi static loading. Repair and retrofitting of brick infilled RC frame shows an improved load carrying and damage tolerance capacity than control frame.

Effect of introducing RC infill on seismic performance of damaged RC frames

  • Turk, Ahmet Murat;Ersoy, Ugur;Ozcebe, Guney
    • Structural Engineering and Mechanics
    • /
    • 제23권5호
    • /
    • pp.469-486
    • /
    • 2006
  • The main objective of this study was to investigate the seismic behavior of damaged reinforced concrete frames rehabilitated by introducing cast in place reinforced concrete infills. Four bare and five infilled frames were constructed and tested. Each specimen consisted of two (twin) 1/3-scale, one-bay and two-story reinforced concrete frames. Test specimens were tested under reversed-cyclic lateral loading until considerable damage occurred. RC infills were then introduced to the damaged specimens. One bare specimen was infilled without being subjected to any damage. All infilled frames were then tested under reversed-cyclic lateral loading until failure. While some of the test frames were detailed properly according to the current Turkish seismic code, others were built with the common deficiencies observed in existing residential buildings. The variables investigated were the effects of the damage level and deficiencies in the bare frame on the seismic behavior of the infilled frame. The deficiencies in the frame were; low concrete strength, inadequate confinement at member ends, 90 degree hooks in column and beam ties and inadequate length of lapped splices in column longitudinal bars made above the floor levels. Test results revealed that both the lateral strength and lateral stiffness increased significantly with the introduction of reinforced concrete infills even when the frame had the deficiencies mentioned above. The deficiency which affected the behavior of infilled frames most adversely was the presence of lap splices in column longitudinal reinforcement.

Performance analysis of a detailed FE modelling strategy to simulate the behaviour of masonry-infilled RC frames under cyclic loading

  • Mohamed, Hossameldeen M.;Romao, Xavier
    • Earthquakes and Structures
    • /
    • 제14권6호
    • /
    • pp.551-565
    • /
    • 2018
  • Experimental testing is considered the most realistic approach to obtain a detailed representation of the nonlinear behaviour of masonry-infilled reinforced concrete (RC) structures. Among other applications, these tests can be used to calibrate the properties of numerical models such as simplified macro-models (e.g., strut-type models) representing the masonry infill behaviour. Since the significant cost of experimental tests limits their widespread use, alternative approaches need to be established to obtain adequate data to validate the referred simplified models. The proposed paper introduces a detailed finite element modelling strategy that can be used as an alternative to experimental tests to represent the behaviour of masonry-infilled RC frames under earthquake loading. Several examples of RC infilled frames with different infill configurations and properties subjected to cyclic loading are analysed using the proposed modelling approach. The comparison between numerical and experimental results shows that the numerical models capture the overall nonlinear behaviour of the physical specimens with adequate accuracy, predicting their monotonic stiffness, strength and several failure mechanisms.

Experimental and analytical evaluation of a low-cost seismic retrofitting method for masonry-infilled non-ductile RC frames

  • Srechai, Jarun;Leelataviwat, Sutat;Wongkaew, Arnon;Lukkunaprasit, Panitan
    • Earthquakes and Structures
    • /
    • 제12권6호
    • /
    • pp.699-712
    • /
    • 2017
  • This study evaluates the effectiveness of a newly developed retrofitting scheme for masonry-infilled non-ductile RC frames experimentally and by numerical simulation. The technique focuses on modifying the load path and yield mechanism of the infilled frame to enhance the ductility. A vertical gap between the column and the infill panel was strategically introduced so that no shear force is directly transferred to the column. Steel brackets and small vertical steel members were then provided to transfer the interactive forces between the RC frame and the masonry panel. Wire meshes and high-strength mortar were provided in areas with high stress concentration and in the panel to further reduce damage. Cyclic load tests on a large-scale specimen of a single-bay, single-story, masonry-infilled RC frame were carried out. Based on those tests, the retrofitting scheme provided significant improvement, especially in terms of ductility enhancement. All retrofitted specimens clearly exhibited much better performances than those stipulated in building standards for masonry-infilled structures. A macro-scale computer model based on a diagonal-strut concept was also developed for predicting the global behavior of the retrofitted masonry-infilled frames. This proposed model was effectively used to evaluate the global responses of the test specimens with acceptable accuracy, especially in terms of strength, stiffness and damage condition.

비내진 상세를 가진 조적채움벽의 내진성능평가 (Seismic Performance Evaluation of Masonry Infilled Wall With Non-seismic Detail)

  • 박병태;권기혁
    • 한국안전학회지
    • /
    • 제32권1호
    • /
    • pp.66-74
    • /
    • 2017
  • Masonry walls which are commonly used for partitions in low-rise reinforced concrete (RC) structures, can be easily exposed to high risks under strong earthquakes. Since the strength degradations cannot be protected under the ground motions, their applications cannot be recommended for building structures which are designed to possess high seismic performances. However, masonry-infilled walls are typically considered as non-structural elements in evaluating the seismic performance of building structures. In order to figure out this problem, this study performed experiments using two specimens-only RC frame and RC frame infilled with masonry walls- under static loading. Also, the study established analytical models representing fully infilled frames and bare frame, and compared their structural behavior with test results. In addition, analytical model representing partially infilled frames was established and analyzed. Test results indicated that strength and energy dissipating capacity were increased for IW-RN(fully infilled frames) compared to the NW(bare frame). The nonlinear static analysis of the three specimens was also conducted using the inelastic plastic hinge frame element and diagonal strut models, and the analytical results successfully simulated the nonlinear behaviour of the specimens in accordance with the test results.

Evaluation of local and global ductility relationships for seismic assessment of regular masonry-infilled reinforced concrete frames using a coefficient-based method

  • Su, R.K.L.;Tang, T.O.;Lee, C.L.
    • Earthquakes and Structures
    • /
    • 제5권1호
    • /
    • pp.1-22
    • /
    • 2013
  • Soft storey failure mechanism is a common collapse mode for masonry-infilled (MI) reinforced concrete (RC) buildings subjected to severe earthquakes. Simple analytical equations correlating global with local ductility demands are derived from pushover (PO) analyses for seismic assessments of regular MI RC frames, considering the critical interstorey drift ratio, number of storeys and lateral loading configurations. The reliability of the equations is investigated using incremental dynamic analyses for MI RC frames of up to 7 storeys. Using the analytical ductility relationship and a coefficient-based method (CBM), the response spectral accelerations and period shift factors of low-rise MI RC frames are computed. The results are verified through published shake table test results. In general applications, the analytical ductility relationships thus derived can be used to bypass the onerous PO analysis while accurately predicting the local ductility demands for seismic assessment of regular MI RC frames.

Effectiveness of some conventional seismic retrofitting techniques for bare and infilled R/C frames

  • Kakaletsis, D.J.;David, K.N.;Karayannis, C.G.
    • Structural Engineering and Mechanics
    • /
    • 제39권4호
    • /
    • pp.499-520
    • /
    • 2011
  • The effectiveness of a technique for the repair of reinforced concrete members in combination with a technique for the repair of masonry walls of infilled frames, damaged due to cyclic loading, is experimentally investigated. Three single - story, one - bay, 1/3 - scale frame specimens are tested under cyclic horizontal loading, up to a drift level of 4%. One bare frame and two infilled frames with weak and strong infills, respectively, have been tasted. Specimens have spirals as shear reinforcement. The applied repair technique is mainly based on the use of thin epoxy resin infused under pressure into the crack system of the damaged RC joint bodies, the use of a polymer modified cement mortar with or without a fiberglass reinforcing mesh for the damaged infill masonry walls and the use of CFRP plates to the surfaces of the damaged structural RC members, as external reinforcement. Specimens after repair, were retested in the same way. Conclusions concerning the effectiveness of the applied repair technique, based on maximum cycles load, loading stiffness, and hysteretic energy absorption capabilities of the tested specimens, are drawn and commented upon.

조적채움벽을 갖는 RC 벽-슬래브 골조의 내진성능 연구 (Investigation of Seismic Performance of RC Wall-Slab Frames with Masonry Infill)

  • 김찬호;이승제;허석재;엄태성
    • 한국지진공학회논문집
    • /
    • 제26권3호
    • /
    • pp.137-147
    • /
    • 2022
  • This study investigated the seismic performance of reinforced concrete (RC) wall-slab frames with masonry infills. Four RC wall-slab frames with or without masonry infill were tested under cyclic loading. The RC frames were composed of in-plane and out-of-plane walls and top and bottom slabs. For masonry infill walls, cement bricks were stacked applying mortar paste only at the bed joints, and, at the top, a gap of 50 mm was intentionally left between the masonry wall and top RC slab. Both sides of the masonry walls were finished by applying ordinary or fiber-reinforced mortars. The tests showed that despite the gap on top of the masonry walls, the strength and stiffness of the infilled frames were significantly increased and were different depending on the direction of loading and the finishing mortars. During repeated loading, the masonry walls underwent horizontal and diagonal cracking and corner crushing/spalling, showing a rocking mode inside the RC wall-slab frame. Interestingly, this rocking mode delayed loss of strength, and as a result, the ductility of the infilled frames increased to the same level as the bare frame. The interaction of masonry infill and adjacent RC walls, depending on the direction of loading, was further investigated based on test observations.