• 제목/요약/키워드: infill

검색결과 324건 처리시간 0.021초

Finite element micro-modelling of RC frames with variant configurations of infill masonry

  • Mohammad, Aslam F.;Khalid, Fatima;Khan, Rashid A.
    • Structural Engineering and Mechanics
    • /
    • 제81권4호
    • /
    • pp.395-409
    • /
    • 2022
  • The presence of infill generally neglected in design despite the fact that infill contribution significantly increase the lateral stiffness and strength of the reinforced concrete frame structure. Several experimental studies and computational models have been proposed to capture the rational response of infill-frame interaction at global level. However, limited studies are available on explicit finite element modelling to study the local behavior due to high computation and convergence issues in numerical modelling. In the current study, the computational modelling of RC frames is done with various configurations of infill masonry in terms of types of blocks, lateral loading and reinforcement detailing employed with material nonlinearities, interface contact issues and bond-slip phenomenon particularly near the beam-column joints. To this end, extensive computational modelling of five variant characteristics test specimens extracted from the detailed experimental program available in literature and process through nonlinear static analysis in FEM code, ATENA generally used to capture the nonlinear response of reinforced concrete structures. Results are presented in terms of damage patterns and capacity curves by employing the finest possible detail provided in the experimental program. Comparative analysis shows that good correlation amongst the experimental and numerical simulated results both in terms of capacity and crack patterns.

조적 채움벽의 내진성 (Earthquake Resistance of Masonry Infilled Wall)

  • 이한선;우성우;유은진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.93-98
    • /
    • 2000
  • The objective of this study is to investigate the results of researches which have been conducted throughout the world and in Korea concerning the behavior modes of masonry infill panels and frames. The influence of masonry infill panels on the seismic behavior of RC frames must be considered in the design and evaluation procedure though current code provisions do not generally require explicitly this consideration. However, since the level of the earthquake intensity in Korea is assumed to be moderate, the masonry infill panels may cause the different effect to the structure from those in high seismicity region and this difference should be studied in depth in the future.

  • PDF

MC설계를 적용한 장수명주택 인필의 계획특성에 관한 연구 (A Study on the Planning Characteristics of Infill System for Long Life Housing Applied with MC Design)

  • 왕우철;임석호
    • 한국주거학회논문집
    • /
    • 제27권1호
    • /
    • pp.63-70
    • /
    • 2016
  • Domestic apartment housing has been designed in accordance with the new housing supply-driven policies for a long time. As a result, its design, material production, construction, maintenance and remodeling process, rather than being systematically performed, were individually approached to cause insufficient linkage between technologies. For these problems and the supply of long life housing, active research on long life housing has been conducted in Korea since 2005. However, the existing research on long life housing has been focused on a single item with no connection made between infill systems, and no overall interface rule, resulting in no activation of the business. In this study, for the supply and activation of long life housing, we aim to analyze the problems of existing long life housing to set up its matching standards for infill systems.

조적채움벽 및 강재댐퍼 보강 RC 골조의 내진성능 평가에 관한 연구 (A Study on Seismic Performance Evaluation of RC Frame Retrofitted by Masonry Infill Wall and Steel Damper)

  • 이정한;양원직;강대언;송한범;오상훈;이원호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.129-132
    • /
    • 2005
  • The primary purpose of this investigation is to find out the shear behavior and the shear capacity of RC bare frames, brick-infilled RC frames, and damper-retrofitted RC frames and to evaluate the average shear strength of brick--infill wall. The main variables art the absence of brick infill wall and steel plate slit damper. The test results show that the shear capacity of specimen IF-DR is 2.8 times as high as that of the specimen BF and it presents the fact that the retrofitting effect and the possibility of RC frame reuse with changing the slit damper is verified. And the average shear strength of the brick infill wall is figured to be at $5.0 kgf/cm^2$.

  • PDF

Effect of Ferro-cement retrofit in the stiffened infill RC frame

  • Arulselvan, Suyamburaja;Sathiaseelan, P.
    • Structural Engineering and Mechanics
    • /
    • 제61권4호
    • /
    • pp.511-518
    • /
    • 2017
  • This paper presents an experimental investigation on the contribution of RCC strip in the in-filled RC frames. In this research, two frames were tested to study the behavior of retrofitted RC frame under cyclic loading. In the two frame, one was three bay four storey R.C frame with central bay brick infill with RCC strip in-between brick layers and the other was retrofitted frame with same stiffened brick work. Effective rehabilitation is required some times to strengthened the RC frames. Ferrocement concrete strengthening was used to retrofit the frame after the frame was partially collapsed. The main effects of the frames were investigated in terms of displacement, stiffness, ductility and energy dissipation capacity. Diagonal cracks in the infill bays were entirely eliminated by introducing two monolithic RCC strips. Thus more stability of the frame was obtained by providing RCC strips in the infill bays. Load carrying capacity of the frame was increased by enlarging the section in the retrofitted area.

Strengthening of deficient RC frames with high strength concrete panels: an experimental study

  • Baran, Mehmet;Susoy, Melih;Tankut, Tugrul
    • Structural Engineering and Mechanics
    • /
    • 제37권2호
    • /
    • pp.177-196
    • /
    • 2011
  • An economic, structurally effective and practically applicable strengthening technique was developed for reinforced concrete (RC) framed buildings. The idea of the technique is to convert the existing hollow brick infill wall into a load carrying system acting as a cast-in-place RC infill wall by bonding relatively thin high strength precast concrete PC panels to the plastered hollow brick infill. For this purpose, a total of eight one-third scale, one bay, one story frames were tested under reversed-cyclic lateral loads. Test frames were designed and constructed with common deficiencies observed in practice. Four different panel types were used for strengthening. Test results showed that both strength and stiffness of the frames were significantly improved by the introduction of PC panels. Experimental results were compared with the analytical approaches suggested by the authors.

장수명 공동주택 목업하우스 적용 인필시스템에 관한 연구 (A Study on the Infill system applied to Mock-up house of the long life housing)

  • 박경순;강혁;송진용;손원득
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.558-562
    • /
    • 2008
  • This study is being conducted to develope an infill system applied to Mock-Up House of the Korean long life housing. This paper presents result of study and an infill system applied to Mock-up house, commenced in June 2005. We also present the mechanical system and technology, the capability of interface, and other factors.

  • PDF

3D 프린터 PLA 출력재료의 최적 출력조건 (Optimal Printing Conditions of PLA Printing Material for 3D Printer)

  • 유도현
    • 전기학회논문지
    • /
    • 제65권5호
    • /
    • pp.825-830
    • /
    • 2016
  • The purpose of this study optimizes the conditions of PLA printing material for 3D printer. Deltabot type 3D printer is used. The ranges of printing temperature, printing speed, and infill density are $195{\sim}215^{\circ}C$, 10~70mm/sec, and 10~100% respectively. From the results of printing temperature, printing quality is almost same every printing temperature. From the results of printing speed and infill density, printing quality is excellent under 40mm/sec, and over 50% respectively. Surface roughness is $2.28{\mu}mRa$ at $205^{\circ}C$, 10mm/sec, 100%, and is $5.93{\mu}mRa$ at $205^{\circ}C$, 70mm/sec. Surface roughness is directly proportional to the printing speed, and is inversely proportional to the infill density. Objects fabricated PLA printing material adhere bed at room temperature.

장수명 실증주택 인필 시공: 이론과 현실적 한계 (Long-Life Demonstration Housing Infill Construction : Theory and Practical Limits)

  • 김수암;양현정
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.89-90
    • /
    • 2019
  • The purpose of this study is to clarify the difference between design and construction conditions based on theory for support (S) and infill (I) distinction and separation in long-life housing, and to search for future direction. To do this, the SI theory is summarized and the construction situation is examined in the demonstration house and the differences and limitations are analyzed. In order to realize SI separation in Korea, it is necessary to set the position of pipe shafts for sewage and drainage, buried in the structure and Ondol layer of the private pipes, buried various wires in the inner wall, and fixing the position of the inner wall.

  • PDF

Experimental study on infilled frames strengthened by profiled steel sheet bracing

  • Cao, Pingzhou;Feng, Ningning;Wu, Kai
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.777-790
    • /
    • 2014
  • The purpose of this study is to investigate the seismic performance of reinforced concrete (RC) frames strengthened by profiled steel sheet bracing which takes the influence of infill walls into consideration. One-bay, two-story, 1/3 scale two specimens shared same feature of dimensions, one specimen consists only beams and columns; the other one is reinforced by profiled steel sheet bracing with infill walls. Hysteretic curves, envelope curves, stiffness degradation curves and energy dissipation capacities are presented based on test data. Test results indicate that the ultimate load of strengthened specimen has been improved by 225%. The stiffness of reinforced by profiled steel sheet bracing has been increased by 108%. This demonstrates that infill walls and profiled steel sheet bracing enhanced the strength and stiffness distinctly. Energy dissipation has an obvious increase after 12 cycles. This shows that the reinforced specimen is able to bear the lateral load effectively and absorb lots of seismic energy.