• Title/Summary/Keyword: infill

Search Result 320, Processing Time 0.028 seconds

Structural design of steel fibre reinforced concrete in-filled steel circular columns

  • Eltobgy, Hanan H.
    • Steel and Composite Structures
    • /
    • v.14 no.3
    • /
    • pp.267-282
    • /
    • 2013
  • This paper presents the behavior and design of axially loaded normal and steel fiber reinforced concrete in-filled steel tube (SFRCFT) columns, to examine the contribution of steel fibers on the compressive strength of the composite columns. Non-linear finite element analysis model (FEA) using ANSYS software has been developed and used in the analysis. The confinement effect provided by the steel tube is considered in the analysis. Comparisons of the analytical model results, along with other available experimental outputs from literature have been done to verify the structural model. The compressive strength and stiffness of SFRC composite columns were discussed, and the interpretation of the FEA model results has indicated that, the use of SFRC as infill material has a considerable effect on the strength and stiffness of the composite column. The analytical model results were compared with the existing design methods of composite columns - (EC4, AISC/LRFD and the Egyptian code of Practice for Steel Construction, ECPSC/LRFD). The comparison indicated that, the results of the FEA model were evaluated to an acceptable limit of accuracy. The code design equations were modified to introduce the steel fiber effect and compared with the results of the FEA model for verification.

Out of plane behavior of walls, using rigid block concepts

  • Gh.M, Mohammadi;F, Yasrebi
    • Structural Engineering and Mechanics
    • /
    • v.34 no.3
    • /
    • pp.335-350
    • /
    • 2010
  • Out of plane behaviors of walls and infills are investigated in this paper, using rigid block concepts. Walls and infills are sometimes separated from top beams because of in plane movement of the walls and crumbling mortar layers under the top beams. Therefore, sufficient strength should be supplied to hold them against out of plane forces. Such walls are studied here under some real and scaled earthquakes, regarding their out of plane behavior. Influences of some reinforcements, connecting the walls to frames or perpendicular walls, are also studied. It is shown that unreinforced walls of regular sizes (3 m high and 4.5 m long) are normally unstable in the earthquakes. However, performing some reinforced bars that connect them to adjacent elements- frames or perpendicular walls - stabilizes them. Eventually, it is concluded that supplying 3 reinforced bars at 1/4, 2/4 and 3/4 of the panel's height stabilizes the walls in the assumed earthquakes. In this regard, for 20 cm and 35 cm thick walls ${\Phi}$18mm and ${\Phi}$20mm bars are to be used, respectively. For walls with other configurations, the forces and required areas of the reinforcements can be determined by the developed method of this paper.

Finite element models of reinforced ECC beams subjected to various cyclic deformation

  • Frank, Timothy E.;Lepech, Michael D.;Billington, Sarah L.
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.305-317
    • /
    • 2018
  • Steel reinforced Engineered Cementitious Composite (ECC) components have been proposed for seismic structural applications, for example in coupling beams, infill panels, joints, columns, and flexural members. The development of strain in the steel reinforcement of cementitious components has been shown to vary based on both the steel reinforcement ratio and the applied deformation history. Strain in the steel reinforcement of reinforced ECC components is an important structural response metric because ultimate failure is often by fracture of the steel reinforcement. A recently proposed bond-slip model has been successfully calibrated to cyclically tested reinforced ECC beams wherein the deformation history contained monotonically increasing cycles. This paper reports simulations of two-dimensional finite element models of reinforced ECC beams to determine the appropriateness and significance of altering a phenomenological bond-slip model based on the applied deformation history. The numerical simulations with various values of post-peak bond-slip softening stiffness are compared to experimental results. Varying the post-peak bond-slip softening stiffness had little effect on the cracking patterns and hysteretic response of the reinforced ECC flexural models tested, which consisted of two different steel reinforcement ratios subjected to two different deformation histories. Varying the post-peak bond-slip softening stiffness did, however, affect the magnitude of strain and the length of reinforcing bar that strain-hardened. Overall, a numerical model with a constant bond-slip model represented well various responses in reinforced ECC beams with multiple steel reinforcement ratios subjected to different deformation histories.

Developing Technology Influence Matrix to Support Decision-making for Long-life Housing Planning - Focused on Exclusive Housing Unit of Long-life Housing -

  • Song, Sanghoon;Bang, Jong-Dae;Park, Ji-Young
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.47-55
    • /
    • 2016
  • Purpose: Long-life housing causes unavoidable cost increase while providing higher durability, flexibility, and repair easiness compare to those of normal apartment. The effectiveness should be evaluated considering the level of passing mandatory Long-life housing Certification System when supplying specific size of apartment complex. Thus, it is essential to identify the estimated costs and the obtainable grade by applying the optional element technologies selectively during the design phase. This study aimed to suggest the technology influence matrix(TIM) to support decision-making of element technologies in planning stage of long-life housing. Method: The technology influence matrix was established based on the property information about applicable element technologies for long-life housing such as construction methods, interface types, cost data, and certification-related characteristics. The usefulness of TIM was verified through case study, in which TIM was applied to the exclusive housing unit and the influences from four areas of quantity, cost, certification, and schedule were identified and calculated. Result: TIMs covering four areas representing the essential planning factors were developed, and are expected to contribute to sound decision-making in planning long-life housing.

Seismic Performance Evaluation of Masonry-Infilled Frame Structures using Equivalent Strut Models (등가 스트럿 모델을 이용한 조적조 채움벽 골조의 내진성능평가)

  • Park, Ji-Hun;Jeon, Seong-Ha;Kang, Kyung-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.47-59
    • /
    • 2012
  • The seismic performance of masonry-infilled frame structures, typical in school buildings, is evaluated through equivalent strut models. A bare frame model, concentric strut models and eccentric strut models with various material characteristics available in the literature are analyzed. Displacements and damage states at the performance points obtained by the capacity spectrum method show great differences among the models. Infill walls act positively in concentric strut models and negatively in eccentric strut models at the performance points for a given seismic demand. In addition, the behavior at the ultimate displacements shows considerably different strengths, inter-story drifts, and numbers and locations of damaged members among various modeling methods and material strengths.

Study on the Development of Maintenance Process in Long-Life Housing - Focus on the Development of Maintenance Process for the Manager - (장수명공동주택의 유지관리업무프로세스 구축에 관한 연구 - 관리자를 위한 유지관리업무프로세스를 중심으로 -)

  • Ji, Jang-Hun;Kim, Soo-Am;Yoon, Sang-Cho
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.04a
    • /
    • pp.344-349
    • /
    • 2009
  • To be Low Carbon and Green Growth, it is necessary that Long-Life Housing based on Green Technology is supplied. The main concern at the moment is developing Sustainable Housing relative to Life-Cycle or Life-Style of the residents, and the resident of Remodeling or Redevelopment. This study is aim to be Development of Maintenance Process in order to make steady dwelling when supplying Long-Life Housing that separates Support(Skeleton) and Infill different from the existing Short-Life Housing, and has durability, alterability, available remodeling, easy maintenance. Long-Life Housing should consider the maintenance about movement and variableness. In contrast, the maintenance of the existing Housing is regular maintenance, change and repair by damage. As well as Long-Life Housing should be demanded proper Development of Maintenance Process because of difference of Housing in concept, design and Construction. Therefore, this study looks into problems when applying Development of Maintenance Process in Long-Life Housing, and shows Development of Maintenance Process about the efficient Long-Life Housing for the manager.

  • PDF

An Algorithm for the Removing of Offset Loop Twists during the Tool Path Generation of FDM 3D Printer (FDM 3D 프린팅의 경로생성을 위한 옵?루프의 꼬임제거 알고리즘)

  • Olioul, Islam Md.;Kim, Ho-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • Tool path generation is a part of process planning in 3D printing. This is done before actual printing by a computer rather than an AM machine. The mesh geometry of the 3D model is sliced layer-by-layer along the Z-axis and tool paths are generated from the sliced layers. Each 2-dimensional layer can have two types of printing paths: (i) shell and (ii) infill. Shell paths are made of offset loops. During shell generation, twists can be produced in offset loops which will cause twisted tool paths. As a twisted tool path cannot be printed, it is necessary to remove these twists during process planning. In this research, An algorithm is presented to remove twists from the offset loops. To do so the path segments are traversed to identify twisted points. Outer offset loops are represented in the counter-clockwise segment order and clockwise rotation for the inner offset loop to decide which twisted loop should be removed. After testing practical 3D models, the proposed algorithm is verified to use in tool path generation for 3D printing.

Modal parameter identification of in-filled RC frames with low strength concrete using ambient vibration

  • Arslan, Mehmet E.;Durmus, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.137-149
    • /
    • 2014
  • In this study, modal parameters such as natural frequencies, mode shapes and damping ratios of RC frames with low strength are determined for different construction stages using ambient vibration test. For this purpose full scaled, one bay and one story RC frames are produced and tested for plane, brick in-filled and brick in-filled with plaster conditions. Measurement time, frequency span and effective mode number are determined by considering similar studies and literature. To obtain experimental dynamic characteristics, Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification techniques are used together. It is shown that the ambient vibration measurements are enough to identify the most significant modes of RC frames. The results indicate that modal parameters change significantly depending on the construction stages. In addition, Infill walls increase stiffness and change the mode shapes of the RC frame. There is a good agreement between mode shapes obtained from brick in-filled and in-filled with plaster conditions. However, some differences are seen in plane frame, like expected. Dynamic characteristics should be verified using finite element analysis. Finally, inconsistency between experimental and analytical dynamic characteristics should be minimize by finite element model updating using some uncertain parameters such as material properties, boundary condition and section properties to reflect the current behavior of the RC frames.

Nonlinear interaction analysis of infilled frame-foundation beam-homogeneous soil system

  • Hora, M.S.
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.267-289
    • /
    • 2014
  • A proper physical modeling of infilled building frame-foundation beam-soil mass interaction system is needed to predict more realistic and accurate structural behavior under static vertical loading. This is achieved via finite element method considering the superstructure, foundation and soil mass as a single integral compatible structural unit. The physical modelling is achieved via use of finite element method, which requires the use of variety of isoparametric elements with different degrees of freedom. The unbounded domain of the soil mass has been discretized with coupled finite-infinite elements to achieve computational economy. The nonlinearity of soil mass plays an important role in the redistribution of forces in the superstructure. The nonlinear behaviour of the soil mass is modeled using hyperbolic model. The incremental-iterative nonlinear solution algorithm has been adopted for carrying out the nonlinear elastic interaction analysis of a two-bay two-storey infilled building frame. The frame and the infill have been considered to behave in linear elastic manner, whereas the subsoil in nonlinear elastic manner. In this paper, the computational methodology adopted for nonlinear soil-structure interaction analysis of infilled frame-foundation-soil system has been presented.

Numerical analysis of geocell reinforced ballast overlying soft clay subgrade

  • Saride, Sireesh;Pradhan, Sailesh;Sitharam, T.G.;Puppala, Anand J.
    • Geomechanics and Engineering
    • /
    • v.5 no.3
    • /
    • pp.263-281
    • /
    • 2013
  • Geotextiles and geogrids have been in use for several decades in variety of geo-structure applications including foundation of embankments, retaining walls, pavements. Geocells is one such variant in geosynthetic reinforcement of recent years, which provides a three dimensional confinement to the infill material. Although extensive research has been carried on geocell reinforced sand, clay and layered soil subgrades, limited research has been reported on the aggregates/ballast reinforced with geocells. This paper presents the behavior of a railway sleeper subjected to monotonic loading on geocell reinforced aggregates, of size ranging from 20 to 75 mm, overlying soft clay subgrades. Series of tests were conducted in a steel test tank of dimensions $700mm{\times}300mm{\times}700mm$. In addition to the laboratory model tests, numerical simulations were performed using a finite difference code to predict the behavior of geocell reinforced ballast. The results from numerical simulations were compared with the experimental data. The numerical and experimental results manifested the importance that the geocell reinforcement has a significant effect on the ballast behaviour. The results depicted that the stiffness of underlying soft clay subgrade has a significant influence on the behavior of the geocell-aggregate composite material in redistributing the loading system.