• Title/Summary/Keyword: inference model

Search Result 1,171, Processing Time 0.03 seconds

An Inference System Using BIG5 Personality Traits for Filtering Preferred Resource

  • Jong-Hyun, Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • In the IoT environment, various objects mutually interactive, and various services can be composed based on this environment. In the previous study, we have developed a resource collaboration system to provide services by substituting limited resources in the user's personal device using resource collaboration. However, in the preceding system, when the number of resources and situations increases, the inference time increases exponentially. To solve this problem, this study proposes a method of classifying users and resources by applying the BIG5 user type classification model. In this paper, we propose a method to reduce the inference time by filtering the user's preferred resources through BIG5 type-based preprocessing and using the filtered resources as an input to the recommendation system. We implement the proposed method as a prototype system and show the validation of our approach through performance and user satisfaction evaluation.

A Study on the Analysis of Bicycle Road Service Level by Using Adaptive Neuro-Fuzzy Inference System (적응 뉴로-퍼지를 이용한 자전거도로 서비스수준 분석에 관한 연구)

  • Kim, Kyung Whan;Jo, Gyu Boong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2D
    • /
    • pp.217-225
    • /
    • 2011
  • Currently our country has very serious problems of traffic congestion and urban environment due to increasing automobile ownership. Recently, our concern about environmentally sustainable transportation and green transportation is increasing, so the government is pushing ahead the policy of bicycle using activation. So it is needed to develop a model to analyze the service level of bicycle roads more realistically. In this study, a neuro-fuzzy inference model to analyze the service level of bicycle roads was built selecting the width of bicycle roads, the number of conflicts during cycling and pedestrian volume, which have fuzzy characteristics, as input variables. The predictability of the model was evaluated comparing the surveyed and the estimated. The values of the statistics, $R^2$, MAE and MSE were 0.987, 0.142, 0.032. Therefore, It may be judged that the explainability of the model is very high. The service levels of bicyle roads estimated by the model are 1~3 steps lower than KHCM assessments. The reason may be explained that the model estimates the service level considering the width of bicycle roads and the number of conflicts simultaneously besides pedestrian volume.

Effect on self-enhancement of deep-learning inference by repeated training of false detection cases in tunnel accident image detection (터널 내 돌발상황 오탐지 영상의 반복 학습을 통한 딥러닝 추론 성능의 자가 성장 효과)

  • Lee, Kyu Beom;Shin, Hyu Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.419-432
    • /
    • 2019
  • Most of deep learning model training was proceeded by supervised learning, which is to train labeling data composed by inputs and corresponding outputs. Labeling data was directly generated manually, so labeling accuracy of data is relatively high. However, it requires heavy efforts in securing data because of cost and time. Additionally, the main goal of supervised learning is to improve detection performance for 'True Positive' data but not to reduce occurrence of 'False Positive' data. In this paper, the occurrence of unpredictable 'False Positive' appears by trained modes with labeling data and 'True Positive' data in monitoring of deep learning-based CCTV accident detection system, which is under operation at a tunnel monitoring center. Those types of 'False Positive' to 'fire' or 'person' objects were frequently taking place for lights of working vehicle, reflecting sunlight at tunnel entrance, long black feature which occurs to the part of lane or car, etc. To solve this problem, a deep learning model was developed by simultaneously training the 'False Positive' data generated in the field and the labeling data. As a result, in comparison with the model that was trained only by the existing labeling data, the re-inference performance with respect to the labeling data was improved. In addition, re-inference of the 'False Positive' data shows that the number of 'False Positive' for the persons were more reduced in case of training model including many 'False Positive' data. By training of the 'False Positive' data, the capability of field application of the deep learning model was improved automatically.

The combined algorithm on the time-based alarm processing and diagnosis for power plants (실시간 경보처리 및 진단 병합 알고리즘 개발)

  • 정학영;박현신
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1782-1787
    • /
    • 1997
  • A combined algorithm called APEXS(Alarm Processing and Diagnosis Expert System) for power plants has been developed on the time-based alarm processing with a proper alarm prioritization and a diagnosis with a qualitative model(QM), qualitative interpreter(QI), and a state-transition trees(STT).

  • PDF

Bayesian Analysis of Randomized Response Models : A Gibbs Sampling Approach

  • Oh, Man-Suk
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.2
    • /
    • pp.463-482
    • /
    • 1994
  • In Bayesian analysis of randomized response models, the likelihood function does not combine tractably with typical priors for the parameters of interest, causing computational difficulties in posterior analysis of the parameters of interest. In this article, the difficulties are solved by introducing appropriate latent variables to the model and using the Gibbs sampling algorithm.

  • PDF

LINEAR POLYNOMIAL CONSTRAINTS INFERENCING ALGORITHM

  • Chi, Sung-Do
    • Journal of applied mathematics & informatics
    • /
    • v.3 no.2
    • /
    • pp.129-148
    • /
    • 1996
  • This paper propose the inference mechanism for handling linear polynomial constraints called consistency checking algorithm based on the feasibility checking algorithm borrowed from linear pro-gramming. in contrast with other approaches proposed algorithm can efficiently and coherented by linear polynomial forms. The developed algorithm is successfully applied to the symbolic simulation that offers a convenient means to conduct multiple simultaneous exploration of model behaviors.

Study on Estimating the Optimal Number-right Score in Two Equivalent Mathematics-test by Linear Score Equating (수학교과의 동형고사 문항에서 양호도 향상에 유효한 최적정답율 산정에 관한 연구)

  • 홍석강
    • The Mathematical Education
    • /
    • v.37 no.1
    • /
    • pp.1-13
    • /
    • 1998
  • In this paper, we have represented the efficient way how to enumerate the optimal number-right scores to adjust the item difficulty and to improve item discrimination. To estimate the optimal number-right scores in two equivalent math-tests by linear score equating a measurement error model was applied to the true scores observed from a pair of equivalent math-tests assumed to measure same trait. The model specification for true scores which is represented by the bivariate model is a simple regression model to inference the optimal number-right scores and we assume again that the two simple regression lines of raw scores and true scores are independent each other in their error models. We enumerated the difference between mean value of $\chi$* and ${\mu}$$\_$$\chi$/ and the difference between the mean value of y*and a+b${\mu}$$\_$$\chi$/ by making an inference the estimates from 2 error variable regression model. Furthermore, so as to distinguish from the original score points, the estimated number-right scores y’$\^$*/ as the estimated regression values of true scores with the same coordinate were moved to center points that were composed of such difference values with result of such parallel score moving procedure as above mentioned. We got the asymptotically normal distribution in Figure 5 that was represented as the optimal distribution of the optimal number-right scores so that we could decide the optimal proportion of number-right score in each item. Also by assumption that equivalence of two tests is closely connected to unidimensionality of a student’s ability. we introduce new definition of trait score to evaluate such ability in each item. In this study there are much limitations in getting the real true scores and in analyzing data of the bivariate error model. However, even with these limitations we believe that this study indicates that the estimation of optimal number right scores by using this enumeration procedure could be easily achieved.

  • PDF

Structural health monitoring of Canton Tower using Bayesian framework

  • Kuok, Sin-Chi;Yuen, Ka-Veng
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.375-391
    • /
    • 2012
  • This paper reports the structural health monitoring benchmark study results for the Canton Tower using Bayesian methods. In this study, output-only modal identification and finite element model updating are considered using a given set of structural acceleration measurements and the corresponding ambient conditions of 24 hours. In the first stage, the Bayesian spectral density approach is used for output-only modal identification with the acceleration time histories as the excitation to the tower is unknown. The modal parameters and the associated uncertainty can be estimated through Bayesian inference. Uncertainty quantification is important for determination of statistically significant change of the modal parameters and for weighting assignment in the subsequent stage of model updating. In the second stage, a Bayesian model updating approach is utilized to update the finite element model of the tower. The uncertain stiffness parameters can be obtained by minimizing an objective function that is a weighted sum of the square of the differences (residuals) between the identified modal parameters and the corresponding values of the model. The weightings distinguish the contribution of different residuals with different uncertain levels. They are obtained using the Bayesian spectral density approach in the first stage. Again, uncertainty of the stiffness parameters can be quantified with Bayesian inference. Finally, this Bayesian framework is applied to the 24-hour field measurements to investigate the variation of the modal and stiffness parameters under changing ambient conditions. Results show that the Bayesian framework successfully achieves the goal of the first task of this benchmark study.

Genetic parameters for worm resistance in Santa Inês sheep using the Bayesian animal model

  • Rodrigues, Francelino Neiva;Sarmento, Jose Lindenberg Rocha;Leal, Tania Maria;de Araujo, Adriana Mello;Filho, Luiz Antonio Silva Figueiredo
    • Animal Bioscience
    • /
    • v.34 no.2
    • /
    • pp.185-191
    • /
    • 2021
  • Objective: The objective of this study was to estimate the genetic parameters for worm resistance (WR) and associated characteristics, using the linear-threshold animal model via Bayesian inference in single- and multiple-trait analyses. Methods: Data were collected from a herd of Santa Inês breed sheep. All information was collected with animals submitted to natural contamination conditions. All data (number of eggs per gram of feces [FEC], Famacha score [FS], body condition score [BCS], and hematocrit [HCT]) were collected on the same day. The animals were weighed individually on the day after collection (after 12-h fasting). The WR trait was defined by the multivariate cluster analysis, using the FEC, HCT, BCS, and FS of material collected from naturally infected sheep of the Santa Inês breed. The variance components and genetic parameters for the WR, FEC, HCT, BCS, and FS traits were estimated using the Bayesian inference under the linear and threshold animal model. Results: A low magnitude was obtained for repeatability of worm-related traits. The mean values estimated for heritability were of low-to-high (0.05 to 0.88) magnitude. The FEC, HCT, BCS, FS, and body weight traits showed higher heritability (although low magnitude) in the multiple-trait model due to increased information about traits. All WR characters showed a significant genetic correlation, and heritability estimates ranged from low (0.44; single-trait model) to high (0.88; multiple-trait model). Conclusion: Therefore, we suggest that FS be included as a criterion of ovine genetic selection for endoparasite resistance using the trait defined by multivariate cluster analysis, as it will provide greater genetic gains when compared to any single trait. In addition, its measurement is easy and inexpensive, exhibiting greater heritability and repeatability and a high genetic correlation with the trait of resistance to worms.

Investigating the Adjustment Methods of Monthly Variability in Tidal Current Harmonic Constants (조류 조화상수의 월변동성 완화 방법 고찰)

  • Byun, Do-Seong
    • Ocean and Polar Research
    • /
    • v.33 no.3
    • /
    • pp.309-319
    • /
    • 2011
  • This is a preliminary study of the feasibility of obtaining reliable tidal current harmonic constants, using one month of current observations, to verify the accuracy of a tidal model. An inference method is commonly used to separate out the tidal harmonic constituents when the available data spans less than a synodic period. In contrast to tidal constituents, studies of the separation of tidal-current harmonics are rare, basically due to a dearth of the long-term observation data needed for such experiments. We conducted concurrent and monthly harmonic analyses for tidal current velocities and heights, using 2 years (2006 and 2007) of current and sea-level records obtained from the Tidal Current Signal Station located in the narrow waterway in front of Incheon Lock, Korea. Firstly, the l-year harmonic analyses showed that, with the exception of $M_2$ and $S_2$ semidiurnal constituents, the major constituents were different for the tidal currents and heights. $K_1$, for instance, was found to be the 4th major tidal constituent but not an important tidal current constituent. Secondly, we examined monthly variation in the amplitudes and phase-lags of the $S_2$ and $K_1$ current-velocity and tide constituents over a 23-month period. The resultant patterns of variation in the amplitudes and phase-lags of the $S_2$ tidal currents and tides were similar, exhibiting a sine curve form with a 6-month period. Similarly, variation in the $K_1$ tidal constant and tidal current-velocity phase lags showed a sine curve pattern with a 6-month period. However, that of the $K_1$ tidal current-velocity amplitude showed a somewhat irregular sine curve pattern. Lastly, we investigated and tested the inference methods available for separating the $K_2$ and $S_2$ current-velocity constituents via monthly harmonic analysis. We compared the effects of reduction in monthly variability in tidal harmonic constants of the $S_2$ current-velocity constituent using three different inference methods and that of Schureman (1976). Specifically, to separate out the two constituents ($S_2$ and $K_2$), we used three different inference parameter (i.e. amplitude ratio and phase-lag diggerence) values derived from the 1-year harmonic analyses of current-velocities and tidal heights at (near) the short-term observation station and from tidal potential (TP), together with Schureman's (1976) inference (SI). Results from these four different methods reveal that TP and SI are satisfactorily applicable where results of long-term harmonic analysis are not available. We also discussed how to further reduce the monthly variability in $S_2$ tidal current-velocity constants.