• Title/Summary/Keyword: inference model

Search Result 1,167, Processing Time 0.02 seconds

A Study On Optimization Of Fuzzy-Neural Network Using Clustering Method And Genetic Algorithm (클러스터링 기법 및 유전자 알고리즘을 이용한 퍼지 뉴럴 네트워크 모델의 최적화에 관한 연구)

  • Park, Chun-Seong;Yoon, Ki-Chan;Park, Byoung-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.566-568
    • /
    • 1998
  • In this paper, we suggest a optimal design method of Fuzzy-Neural Networks model for complex and nonlinear systems. FNNs have the stucture of fusion of both fuzzy inference with linguistic variables and Neural Networks. The network structure uses the simpified inference as fuzzy inference system and the BP algorithm as learning procedure. And we use a clustering algorithm to find initial parameters of membership function. The parameters such as membership functions, learning rates and momentum coefficients are easily adjusted using the genetic algorithms. Also, the performance index with weighted value is introduced to achieve a meaningful balance between approximation and generalization abilities of the model. To evaluate the performance index, we use the time series data for gas furnace and the sewage treatment process.

  • PDF

Design of Type-2 FCM-based Fuzzy Inference Systems and Its Optimization (Type-2 FCM 기반 퍼지 추론 시스템의 설계 및 최적화)

  • Park, Keon-Jun;Kim, Yong-Kab;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2157-2164
    • /
    • 2011
  • In this paper, we introduce a new category of fuzzy inference system based on Type-2 fuzzy c-means clustering algorithm (T2FCM-based FIS). The premise part of the rules of the proposed model is realized with the aid of the scatter partition of input space generated by Type-2 FCM clustering algorithm. The number of the partition of input space is composed of the number of clusters and the individual partitioned spaces describe the fuzzy rules. Due to these characteristics, we can alleviate the problem of the curse of dimensionality. The consequence part of the rule is represented by polynomial functions with interval sets. To determine the structure and estimate the values of the parameters of Type-2 FCM-based FIS we consider the successive tuning method with generation-based evolution by means of real-coded genetic algorithms. The proposed model is evaluated with the use of numerical experimentation.

BAYESIAN INFERENCE FOR THE POWER LAW PROCESS WITH THE POWER PRIOR

  • KIM HYUNSOO;CHOI SANGA;KIM SEONG W.
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.4
    • /
    • pp.331-344
    • /
    • 2005
  • Inference on current data could be more reliable if there exist similar data based on previous studies. Ibrahim and Chen (2000) utilize these data to characterize the power prior. The power prior is constructed by raising the likelihood function of the historical data to the power $a_o$, where $0\;{\le}\;a_o\;{\le}\;1$. The power prior is a useful informative prior in Bayesian inference. However, for model selection or model comparison problems, the propriety of the power prior is one of the critical issues. In this paper, we suggest two joint power priors for the power law process and show that they are proper under some conditions. We demonstrate our results with a real dataset and some simulated datasets.

Predicting the buckling load of smart multilayer columns using soft computing tools

  • Shahbazi, Yaser;Delavari, Ehsan;Chenaghlou, Mohammad Reza
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.81-98
    • /
    • 2014
  • This paper presents the elastic buckling of smart lightweight column structures integrated with a pair of surface piezoelectric layers using artificial intelligence. The finite element modeling of Smart lightweight columns is found using $ANSYS^{(R)}$ software. Then, the first buckling load of the structure is calculated using eigenvalue buckling analysis. To determine the accuracy of the present finite element analysis, a compression study is carried out with literature. Later, parametric studies for length variations, width, and thickness of the elastic core and of the piezoelectric outer layers are performed and the associated buckling load data sets for artificial intelligence are gathered. Finally, the application of soft computing-based methods including artificial neural network (ANN), fuzzy inference system (FIS), and adaptive neuro fuzzy inference system (ANFIS) were carried out. A comparative study is then made between the mentioned soft computing methods and the performance of the models is evaluated using statistic measurements. The comparison of the results reveal that, the ANFIS model with Gaussian membership function provides high accuracy on the prediction of the buckling load in smart lightweight columns, providing better predictions compared to other methods. However, the results obtained from the ANN model using the feed-forward algorithm are also accurate and reliable.

Model Transformation and Inference of Machine Learning using Open Neural Network Format (오픈신경망 포맷을 이용한 기계학습 모델 변환 및 추론)

  • Kim, Seon-Min;Han, Byunghyun;Heo, Junyeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.107-114
    • /
    • 2021
  • Recently artificial intelligence technology has been introduced in various fields and various machine learning models have been operated in various frameworks as academic interest has increased. However, these frameworks have different data formats, which lack interoperability, and to overcome this, the open neural network exchange format, ONNX, has been proposed. In this paper we describe how to transform multiple machine learning models to ONNX, and propose algorithms and inference systems that can determine machine learning techniques in an integrated ONNX format. Furthermore we compare the inference results of the models before and after the ONNX transformation, showing that there is no loss or performance degradation of the learning results between the ONNX transformation.

Development of Hazardous Food Notification Application Using CNN Model (CNN 모델을 이용한 위해 식품 알림 애플리케이션의 개발)

  • Yoon, Dong Eon;Lee, Hyo Sang;Oh, Am Suk
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.3
    • /
    • pp.461-467
    • /
    • 2022
  • This research is to raise awareness of food safety by designing and supporting a hazard food information notification platform for consumers. To this end, the design was carried out by dividing the process into a data extraction process, an application screen design process, and a CNN-based food inference process. Data was collected through public data APIs and crawling, and it was sent to each activity screen designed for Android studios so that it could be output. As a result, when the platform is executed, information on hazardous food names, registration dates, food classification, manufacturing dates, recovery grades, recovery reasons, recovery methods, company names, barcode numbers, and packaging units can be intuitively and conveniently checked. In addition, CNN-based food inference processes allowed mobile cameras to infer harmful food and applied various quantization techniques such as Dynamic Range, Integer, and Float16 to compare the degree of improvement in inference performance. As a result, the group that applied basic quantization and treated device resources with GPU showed the greatest improvement in inference performance. Through this platform, it is expected that the reliability of food safety will be improved by making it more convenient for consumers to recognize food risks.

Causality, causal discovery, causal inference and counterfactuals in Civil Engineering: Causal machine learning and case studies for knowledge discovery

  • M.Z. Naser;Arash Teymori Gharah Tapeh
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.277-292
    • /
    • 2023
  • Much of our experiments are designed to uncover the cause(s) and effect(s) behind a phenomenon (i.e., data generating mechanism) we happen to be interested in. Uncovering such relationships allows us to identify the true workings of a phenomenon and, most importantly, to realize and articulate a model to explore the phenomenon on hand and/or allow us to predict it accurately. Fundamentally, such models are likely to be derived via a causal approach (as opposed to an observational or empirical mean). In this approach, causal discovery is required to create a causal model, which can then be applied to infer the influence of interventions, and answer any hypothetical questions (i.e., in the form of What ifs? Etc.) that commonly used prediction- and statistical-based models may not be able to address. From this lens, this paper builds a case for causal discovery and causal inference and contrasts that against common machine learning approaches - all from a civil and structural engineering perspective. More specifically, this paper outlines the key principles of causality and the most commonly used algorithms and packages for causal discovery and causal inference. Finally, this paper also presents a series of examples and case studies of how causal concepts can be adopted for our domain.

Structural design of Optimized Interval Type-2 FCM Based RBFNN : Focused on Modeling and Pattern Classifier (최적화된 Interval Type-2 FCM based RBFNN 구조 설계 : 모델링과 패턴분류기를 중심으로)

  • Kim, Eun-Hu;Song, Chan-Seok;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.692-700
    • /
    • 2017
  • In this paper, we propose the structural design of Interval Type-2 FCM based RBFNN. Proposed model consists of three modules such as condition, conclusion and inference parts. In the condition part, Interval Type-2 FCM clustering which is extended from FCM clustering is used. In the conclusion part, the parameter coefficients of the consequence part are estimated through LSE(Least Square Estimation) and WLSE(Weighted Least Square Estimation). In the inference part, final model outputs are acquired by fuzzy inference method from linear combination of both polynomial and activation level obtained through Interval Type-2 FCM and acquired activation level through Interval Type-2 FCM. Additionally, The several parameters for the proposed model are identified by using differential evolution. Final model outputs obtained through benchmark data are shown and also compared with other already studied models' performance. The proposed algorithm is performed by using Iris and Vehicle data for pattern classification. For the validation of regression problem modeling performance, modeling experiments are carried out by using MPG and Boston Housing data.

A Formal Specification of Fuzzy Object Inference Model for Supporting Disjunctive Fuzzy Information (이접적 퍼지 정보를 지원하는 퍼지 객체 추론 모델의 정형화)

  • 양형정;양재동
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2001.05a
    • /
    • pp.184-197
    • /
    • 2001
  • In this paper, we provide the formal specification of a fuzzy object inference language and propose ICOT(Integrated C-Object Tool) as its implementation for knowledge-based programming with the disjunctive fuzzy information. The novelty of our model is that it seamlessly combines object inference and fuzzy reasoning into a unified framework without compromising a compatibility with extant databases, especially object-relational ones. In this model most of the object-oriented paradigm is successfully expressed in terms of relational constructs, tailoring fuzzy reasoning style to be well suited to the framework of the databases. It turns out to be useful in preserving its conceptual simplicity as well, since simple-to-use is one of important criteria in designing the databases. Additionally this model considerably enhanced the semantic expressiveness of data allowing disjunctive fuzzy information.

  • PDF

A Study on the Quantitative Threat-Level Assessment Measure Using Fuzzy Inference (퍼지추론을 이용한 정량적 사이버 위협 수준 평가방안 연구)

  • Lee, Kwang-ho;Kim, Jong-Hwa;Kim, Jee-won;Yun, Seok Jun;Kim, Wanju;Jung, Chan-gi
    • Convergence Security Journal
    • /
    • v.18 no.2
    • /
    • pp.19-24
    • /
    • 2018
  • In this study, for evaluating the cyber threat, we presented a quantitative assessment measures of the threat-level with multiple factors. The model presented in the study is a compound model with the 4 factors; the attack method, the actor, the strength according to the type of the threat, and the proximity to the target. And the threat-level can be quantitatively evaluated with the Fuzzy Inference. The model will take the information in natural language and present the threat-level with quantified data. Therefore an organization can accurately evaluate the cyber threat-level and take it into account for judging threat.

  • PDF