• 제목/요약/키워드: inference based query

검색결과 50건 처리시간 0.025초

온톨로지 추론 모델에 독립적인 SPARQL 추론 질의 처리를 위한 재작성 알고리즘 (A Rewriting Algorithm for Inferrable SPARQL Query Processing Independent of Ontology Inference Models)

  • 정동원;;백두권
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제35권6호
    • /
    • pp.505-517
    • /
    • 2008
  • 이 논문에서는 SPARQL로 작성된 OWL-DL 온톨로지 질의에 대한 재작성 알고리즘은 제안한다. 현재 웹 온톨로지 저장소는 주어진 SPARQL 질의의 추론 결과를 얻기 위해 추론 온톨로지 모델을 생성하고 SPARQL 질의와 생성된 추곤 온톨로지 모델과의 일치성을 비교한다. 추론 모델은 베이스 온톨로지 모델에 비해 보다 큰 공간을 필요로 하고 다른 추론 질의론 위해 재사용 될 수 없기 때문에 앞서 언급한 접근 방법은 보다 방대한 크기의 SPARQL 질의 처리에 부적합하다. 이러한 문제점을 해결하기 위해 이 논문에서는 비SPARQL 질의를 재작성하고 이를 기본 베이스 온톨로지 모델에 대해 질의 연산을 수행하여 결과를 획득할 수 있는 SPARQL 재작성 알고리즘을 제안한다. 이러한 목적을 이루기 위해, 먼저 OWL-DL 추론 규칙을 정의하고 이를 질의 그래프 패턴 재작성에 적용한다. 또한 추론 규칙들을 분류하고 이러한 규칙들이 질의 재작성에 미치는 영향에 대하여 기술한다. 제안 알고리즘의 장점을 보이기 위해, Jena 기반의 프로토타입 시스템을 구현한다. 비교 평가론 위해 테스트 질의를 이용하여 실험을 수행하고 제안 방법과 기존 접근 방법을 비교한다. 실험 결과에서, 제안 알고리즘이 완전성 및 정확성의 손실없이 메모리 공간 및 온톨로지 로딩 측면에서 향상된 성능을 보였다.

알츠하이머 관련 논문을 대상으로 하는 온톨로지 기반 지식 표현 방법 연구 (A Study on Ontology Based Knowledge Representation Method with the Alzheimer Disease Related Articles)

  • 이재호;김연희;신현경;송기봉
    • 인터넷정보학회논문지
    • /
    • 제15권3호
    • /
    • pp.125-135
    • /
    • 2014
  • 의료 분야에서는 질병의 진단과 치료를 목적으로 하는 지식베이스 구축에 관심이 높다. 이러한 목적의 지식베이스를 구축하는데 가장 중요한 것은 정확하게 지식을 표현하는 것이다. 본 논문에서는 온톨로지를 이용해 최근 의료 분야에서 많은 관심을 받고 있는 알츠하이머 질병과 관련한 국내 논문들을 대상으로 지식을 표현하는 방법을 제안하였다. 본 논문에서 제안한 온톨로지 기반 지식 표현 방법은 저자, 발행기관 등과 같은 서지 정보에서 추출한 클래스들은 물론 논문의 제목, 초록, 키워드, 결론에서 추출한 연구 주제와 관련된 클래스들을 모두 정의하고 프로퍼티를 통해 클래스들간의 다양한 의미적 관계를 포함하고 있다. 그리고 클래스들간의 계층 관계와 프로퍼티의 이행적 특성도 포함하고 있기 때문에 이를 이용한 추론을 지원한다. 따라서 단순한 키워드 검색뿐만 아니라 의미에 기반을 둔 지식 검색이 가능하다. 또한 온톨로지 검색 언어인 SPARQL을 이용해 추론을 통한 지식 검색 요청을 보다 쉽게 표현할 수 있다.

A Development of Forward Inference Engine and Expert Systems based on Relational Database and SQL

  • Kim, Jin-Sung
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 추계 학술대회 학술발표 논문집
    • /
    • pp.49-52
    • /
    • 2003
  • In this research, we propose a mechanism to develop an inference engine and expert systems based on relational database and SQL (structured query language). Generally, former researchers had tried to develop an expert systems based on text-oriented knowledge base and backward/forward (chaining) inference engine. In these researches, however, the speed of inference was remained as a tackling point in the development of agile expert systems. Especially, the forward inference needs more times than backward inference. In addition, the size of knowledge base, complicate knowledge expression method, expansibility of knowledge base, and hierarchies among rules are the critical limitations to develop an expert systems. To overcome the limitations in speed of inference and expansibility of knowledge base, we proposed a relational database-oriented knowledge base and forward inference engine. Therefore, our proposed mechanism could manipulate the huge size of knowledge base efficiently, and inference with the large scaled knowledge base in a short time. To this purpose, we designed and developed an SQL-based forward inference engine using relational database. In the implementation process, we also developed a prototype expert system and presented a real-world validation data set collected from medical diagnosis field.

  • PDF

RDB-based Automatic Knowledge Acquisition and Forward Inference Mechanism for Self-Evolving Expert Systems

  • Kim, Jin-Sung
    • 한국지능시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.743-748
    • /
    • 2003
  • In this research, we propose a mechanism to develop an inference engine and expert systems based on relational database (RDB) and SQL (structured query language). Generally, former researchers had tried to develop an expert systems based on text-oriented knowledge base and backward/forward (chaining) inference engine. In these researches, however, the speed of inference was remained as a tackling point in the development of agile expert systems. Especially, the forward inference needs more times than backward inference. In addition, the size of knowledge base, complicate knowledge expression method, expansibility of knowledge base, and hierarchies among rules are the critical limitations to develop an expert system. To overcome the limitations in speed of inference and expansibility of knowledge base, we proposed a relational database-oriented knowledge base and forward inference engine. Therefore, our proposed mechanism could manipulate the huge size of knowledge base efficiently. and inference with the large scaled knowledge base in a short time. To this purpose, we designed and developed an SQL-based forward inference engine using relational database. In the implementation process, we also developed a prototype expert system and presented a real-world validation data set collected from medical diagnosis field.

Textual Inversion을 활용한 Adversarial Prompt 생성 기반 Text-to-Image 모델에 대한 멤버십 추론 공격 (Membership Inference Attack against Text-to-Image Model Based on Generating Adversarial Prompt Using Textual Inversion)

  • 오윤주;박소희;최대선
    • 정보보호학회논문지
    • /
    • 제33권6호
    • /
    • pp.1111-1123
    • /
    • 2023
  • 최근 생성 모델이 발전함에 따라 생성 모델을 위협하는 연구도 활발히 진행되고 있다. 본 논문은 Text-to-Image 모델에 대한 멤버십 추론 공격을 위한 새로운 제안 방법을 소개한다. 기존의 Text-to-Image 모델에 대한 멤버십 추론 공격은 쿼리 이미지의 caption으로 단일 이미지를 생성하여 멤버십을 추론하였다. 반면, 본 논문은 Textual Inversion을 통해 쿼리 이미지에 personalization된 임베딩을 사용하고, Adversarial Prompt 생성 방법으로 여러 장의 이미지를 효과적으로 생성하는 멤버십 추론 공격을 제안한다. 또한, Text-to-Image 모델 중 주목받고 있는 Stable Diffusion 모델에 대한 멤버십 추론 공격을 최초로 진행하였으며, 최대 1.00의 Accuracy를 달성한다.

Prediction of User Preferred Cosmetic Brand Based on Unified Fuzzy Rule Inference

  • 김진성
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.271-275
    • /
    • 2005
  • In this research, we propose a Unified Fuzzy rule-based knowledge Inference Systems UFIS) to help the expert in cosmetic brand detection. Users' preferred cosmetic product detection is very important in the level of CRM. To this Purpose, many corporations trying to develop an efficient data mining tool. In this study, we develop a prototype fuzzy rule detection and inference system. The framework used in this development is mainly based on two different mechanisms such as fuzzy rule extraction and RDB (Relational DB)-based fuzzy rule inference. First, fuzzy clustering and fuzzy rule extraction deal with the presence of the knowledge in data base and its value is presented with a value between $0\∼1$. Second, RDB and SQL(Structured Query Language)-based fuzzy rule inference mechanism provide more flexibility in knowledge management than conventional non-fuzzy value-based KMS(Knowledge Management Systems)

  • PDF

Prediction of User's Preference by using Fuzzy Rule & RDB Inference: A Cosmetic Brand Selection

  • Kim, Jin-Sung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권4호
    • /
    • pp.353-359
    • /
    • 2005
  • In this research, we propose a Unified Fuzzy rule-based knowledge Inference Systems (UFIS) to help the expert in cosmetic brand detection. Users' preferred cosmetic product detection is very important in the level of CRM. To this purpose, many corporations trying to develop an efficient data mining tool. In this study, we develop a prototype fuzzy rule detection and inference system. The framework used in this development is mainly based on two different mechanisms such as fuzzy rule extraction and RDB (Relational DB)-based fuzzy rule inference. First, fuzzy clustering and fuzzy rule extraction deal with the presence of the knowledge in data base and its value is presented with a value between 0 -1. Second, RDB and SQL (Structured Query Language)-based fuzzy rule inference mechanism provide more flexibility in knowledge management than conventional non-fuzzy value-based KMS (Knowledge Management Systems).

A Natural Language Query Framework for the Semantic Web

  • 김진성
    • 한국지능시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.127-132
    • /
    • 2008
  • This study proposes a Natural Language Query Framework (NLQF) for the semantic web. It supports an intelligent inference at a semantic level. Most of previous researches focused on the knowledge representation on the semantic web. However, to revitalize the intelligent e-business on the semantic web, there is a need for semantic level inference to the web information. To satisfy the need, we will review the knowledge/resource representation on the semantic web such as RDF, Ontology and Conceptual Graph (CG), and then discuss about the natural language (NL) inference. The result of this research could support a natural interface for the semantic web. Furthermore, we expect that the NLQF can be used in the semantic web-based business communications.

Hybrid Fuzzy Association Structure for Robust Pet Dog Disease Information System

  • Kim, Kwang Baek;Song, Doo Heon;Jun Park, Hyun
    • Journal of information and communication convergence engineering
    • /
    • 제19권4호
    • /
    • pp.234-240
    • /
    • 2021
  • As the number of pet dog-related businesses is rising rapidly, there is an increasing need for reliable pet dog health information systems for casual pet owners, especially those caring for older dogs. Our goal is to implement a mobile pre-diagnosis system that can provide a first-hand pre-diagnosis and an appropriate coping strategy when the pet owner observes abnormal symptoms. Our previous attempt, which is based on the fuzzy C-means family in inference, performs well when only relevant symptoms are provided for the query, but this assumption is not realistic. Thus, in this paper, we propose a hybrid inference structure that combines fuzzy association memory and a double-layered fuzzy C-means algorithm to infer the probable disease with robustness, even when noisy symptoms are present in the query provided by the user. In the experiment, it is verified that our proposed system is more robust when noisy (irrelevant) input symptoms are provided and the inferred results (probable diseases) are more cohesive than those generated by the single-phase fuzzy C-means inference engine.

탐색결과에 근거한 자연어질의 자동확장 및 응용에 관한 연구 고찰 (The Pragmatics of Automatic Query Expansion Based on Search Results of Natural Language Queries)

  • 노정순
    • 정보관리학회지
    • /
    • 제16권2호
    • /
    • pp.49-80
    • /
    • 1999
  • 본 연구는 자연어 비불리언 탐색에서 탐색결과에 근거하여 질의를 수정, 확장, 결합하여 검색효과를 향상시키는 시스템들을 개념모델별로 성능을 고찰하고, 성능에 영향을 끼치는 요소들을 분석하여, 이론적인 개념의 틀을 제시하였다. 용어의 가중치기법, 문헌의 순위화방법, 용어선정알고리즘, 질의확장에 사용된 문헌수와 용어수, 적합성판정정보의 출처 및 척도, 배움표본의 크기, 부적합문헌정보의 사용여부, 용어확장방법, 질의의 크기, DB의 종류와 크기 등에 의해 영향을 받는 것으로 분석되었다.

  • PDF