• Title/Summary/Keyword: inference Control

Search Result 662, Processing Time 0.037 seconds

A design of a robust adaptive fuzzy controller globally stabilizing the multi-input nonlinear system with state-dependent uncertainty (상태변수 종속 불확실성이 포함된 다입력 비선형 계통에 대한 전역 안정성이 보장되는 견실한 적응 퍼지 제어기 설계)

  • Park, Young-Hwan;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.297-305
    • /
    • 1996
  • In this paper a novel robust adaptive fuzzy controller for the nonlinear system with state-dependent uncertainty is proposed. The conventional adaptive fuzzy controller determines the function of state variable bounding the state-dependent uncertain term in the system dynamics on the local state space by off-line calculation. Whereas the proposed method determines that function by the fuzzy inference so that it guarantees the stability of the closed loop system globally on the whole state space. In addition, the method is applicable to the multi-input system. We applied the proposed method to the Burn Control of the Tokamak fusion reactor whose dynamics contains the state-dependent uncertainty and proved the effectiveness of the scheme by using the simulation results.

  • PDF

Tank Level Control using Fuzzy Inference Technique (퍼지추론기법을 이용한 탱크 레벨 제어)

  • Ji, Seok-Jun;Jeon, Pu-Chan;Park, Doo-Hwan;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.724-727
    • /
    • 1997
  • This paper describes a control method of tank level using Fuzzy Inference Technique. In General, to control tank level without a dangerous overflow and with a high accuracy is difficult because of high order time delay and nonlinearity. None the less, the hardware controller using 80586 Microprocessor with DT-2801 board in this paper was successfully implemented, through a series of simulations and experiments, the superiority of the proposed fuzzy controller ta a conventional PID one was investigated.

  • PDF

Obstacle Avoidance and Planning using Optimization of Cost Fuction based Distributed Control Command (분산제어명령 기반의 비용함수 최소화를 이용한 장애물회피와 주행기법)

  • Bae, Dongseog;Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.3
    • /
    • pp.125-131
    • /
    • 2018
  • In this paper, we propose a homogeneous multisensor-based navigation algorithm for a mobile robot, which is intelligently searching the goal location in unknown dynamic environments with moving obstacles using multi-ultrasonic sensor. Instead of using "sensor fusion" method which generates the trajectory of a robot based upon the environment model and sensory data, "command fusion" method by fuzzy inference is used to govern the robot motions. The major factors for robot navigation are represented as a cost function. Using the data of the robot states and the environment, the weight value of each factor using fuzzy inference is determined for an optimal trajectory in dynamic environments. For the evaluation of the proposed algorithm, we performed simulations in PC as well as real experiments with mobile robot, AmigoBot. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.

The Design and application of Fuzzy control System using T-operators (T-operators를 이용한 Fuzzy Control System의 설계 및 응용)

  • Kim, Il;Lee, Sang-Bae
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.1
    • /
    • pp.87-96
    • /
    • 1996
  • In this paper, The Fuzzy Logic Controller based on T-operators is designed. Some typical T-operators and their mathematical properties are studied. A generalized fuzzy inference model is proposed by introducing the general notion of T-operators into the conventional one which is based only on the Min and Max operators. Fuzzy Logic Control algorithms based on the T-operators are suggested. Then, by computer simulations, the effect of various T-operators on the performance of the fuzzy logic controller are studied. The purpose of these simulation studies were to observe the flexibility and system responses using the processed class of T-operators in the fuzzy inference mechanisms. This observation was made on parameters such as speed of reponses, steady-state behavior and non oscillatory responses.

  • PDF

Nonlinearity analysis with fuzzy inference and its implementation to auto-tuning (퍼지추론을 이용한 비선형성 해석 및 자동동조의 구현)

  • 변황우;이은철;이동진;김낙교;남문현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.206-211
    • /
    • 1993
  • This paper presents a new identification method which utilizes fuzzy inference in parameter identification. The proposed system has an additional control loop where a real plant is replaced by a plant model. The control system to be designed is to satisfy the following specifications: 1) It has zero steady-state error. 2) It has adequate damping characteristics. 3) 1),2) satisfied, it has a shortest rise-time. Fuzzy rules describe the relationship between comparison results of the features and magnitude of modification in the model parameter values. This method is effective in auto-tuning because the response of the closed loop is verified. The proposed method is tested in simulation for several plants with high-order lags and dead-times.

  • PDF

An Index of Applicability for the Decomposition of Multivariable Fuzzy Control Rules (제어규칙 분해법에 의한 다변수 퍼지 시스템 제어의 적용기준지수)

  • 이평기;이균경;전기준
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.7
    • /
    • pp.79-86
    • /
    • 1992
  • Recent research on the application of fuzzy set theory to the design of control systems has led to interest in the theory of decomposition of multivariable fuzzy systems. Decomposition of multivariable control rules is preperable since it alleviates the complexity of the problem. However inference error is inevitable because of its approximate nature. In this paper we define an index of applicability which can classify whether the Gupta et. al's method can be applied to multivariable fuzzy system or not. We also propose a modified version of the decomposition which can reduce inference error and improve performance of the system.

  • PDF

A Model Study for Software Development Effort and Cost Estimation by Adaptive Neural Fuzzy Inference System

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.376-376
    • /
    • 2000
  • Several algorithmic models have been proposed to estimate software cost and other management parameters. In particular, early prediction of completion time is absolutely essential for proper advance planning and a version of the possible ruin of a project. However, estimation is difficult because of its similarity to export judgment approaches and for its potential as an expert assistant in support of human judgment. Especially, the nature of the Norden/Rayleigh curve used by Putnam, renders it unreliable during the initial phases of the project, in projects involving a fast manpower buildup, as is the case with most software projects. Estimating software development effort is more complexity, because of infrastructure software related to target-machines hardware and process characteristics should be considered in software development for DCS (Distributed Control System). In this paper, we propose software development effort estimation technique using adaptive neural fuzzy inference system. The methods is applied to case-based projects and discussed.

  • PDF

Fuzzy Neural Controller with Additive Hybrid Operators

  • Hayashi, Yoichi;Keller, James M.;Chen, Zhihong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1118-1120
    • /
    • 1993
  • Fuzzy logic places a considerable burden on an inference engine for applications such as control or approximate reasoning. Various neural network architectures have been proposed to deal with the computational task, and yet, maintain flexibility in the desired traits of the final system. Recently, we introduced a trainable network architecture whose nodes implement weighted Yager additive hybrid operators for fuzzy logic inference in an approximate reasoning setting. In this paper we examine the utility of such networks for control situations. We show that they are capable of learning control functions which are piece-wise monotonic in each of the variables. The learning ability is demonstrated through an example.

  • PDF

Design of improved Mulit-FNN for Nonlinear Process modeling

  • Park, Hosung;Sungkwun Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.102.2-102
    • /
    • 2002
  • In this paper, the improved Multi-FNN (Fuzzy-Neural Networks) model is identified and optimized using HCM (Hard C-Means) clustering method and optimization algorithms. The proposed Multi-FNN is based on FNN and use simplified and linear inference as fuzzy inference method and error back propagation algorithm as learning rules. We use a HCM clustering and genetic algorithms (GAs) to identify both the structure and the parameters of a Multi-FNN model. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNN according to the divisions of input-output space using I/O process data. Also, the parame...

  • PDF

An Adaptive Neuro-Fuzzy System Using Fuzzy Min-Max Networks (퍼지 Min-Max 네트워크를 이용한 적응 뉴로-퍼지 시스템)

  • 곽근창;김성수;김주식;유정웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.367-367
    • /
    • 2000
  • In this paper, an Adaptive neuro-fuzzy Inference system(ANFIS) using fuzzy min-max network(FMMN) is proposed. Fuzzy min-max network classifier that utilizes fuzzy sets as pattern classes is described. Each fuzzy set is an aggregation of fuzzy set hyperboxes. Here, the proposed method transforms the hyperboxes into gaussian membership functions, where the transformed membership functions are inserted for generating fuzzy rules of ANFIS. Finally, we applied the proposed method to the classification problem of iris data and obtained a better performance than previous works.

  • PDF