Recently, large-scale streaming sensor data have emerged due to explosive supply of smart phones, diffusion of IoT and Cloud computing technology, and generalization of IoT devices. Also, researches on combination of semantic web technology are being actively pushed forward by increasing of requirements for creating new value of data through data sharing and mash-up in large-scale environments. However, we are faced with big issues due to large-scale and streaming data in the inference field for creating a new knowledge. For this reason, we propose the RDFS rule based parallel reasoning scheme to service by processing large-scale streaming sensor data with the semantic web technology. In the proposed scheme, we run in parallel each job of Rete network algorithm, the existing rule inference algorithm and sharing data using the HBase, a hadoop database, as a public storage. To achieve this, we implement our system and evaluate performance through the AWS data of the weather center as large-scale streaming sensor data.
Journal of The Korean Association For Science Education
/
v.22
no.2
/
pp.314-335
/
2002
The purpose of this study was to investigate the effects of students' prior knowledge on scientific reasoning process performing a task of controlling variables with computer simulation and to identify a number of problems that students encounter in scientific discovery. Subjects for this study included 60 Korean students: 27 fifth-grade students from an elementary school; 33 seventh-grade students from a middle school. The sinking objects task involving multivariable causal inference was used. The task was presented as computer simulation. The fifth and seventh-grade students participated individually. A subject was interviewed individually while the investigating a scientific reasoning task. Interviews were videotaped for subsequent analysis. The results of this study indicated that students' prior knowledge had a strong effect on students' experimental intent; the majority of participants focused largely on demonstrating their prior knowledge or their current hypothesis. In addition, studnets' theories that were part of one's prior knowledge had significant impact on formulating hypotheses, testing hypothesis, evaluating evidence, and revising hypothesis. This study suggested that students' performance was characterized by tendencies to generate uninformative experiments, to make conclusion based on inconclusive or insufficient evidence, to ignore, reject, or reinterpret data inconsistent with their prior knowledge, to focus on causal factors and ignore noncausal factors, to have difficulty disconfirming prior knowledge, to have confirmation bias and inference bias (anchoring bias).
The Transactions of the Korea Information Processing Society
/
v.5
no.4
/
pp.951-958
/
1998
In this paper, we propose a backward reasoning algorithm which can be utilized in the fuzzy Petri-net representation representing fuzzy production rules. The fuzzy Petri-net representation can be used to model a approximate reasoning system and implement a fuzzy inference engine. The proposed algorithm, which uses the proper belief evaluation functions according to fuzzy concepts in antecedentes and consequents of fuzzy production rules, is more closer to human intuition and reasoning than other methods. This algorithm generates the backward reasoning path from the goal to the initial nodes and evaluates the belief value of the goal node using belief evaluation functions.
The equality relation is very important in mechanical theorem proving procedures. A proposed inference rule called RHU-resolution is intended to extend the hyperparamodulation[23, 9] by introducing a bidirectional proof search that simultaneously employs a forward reasoning and a backward reasoning, and generalize it by incorporating beneflts of extended hyper steps with a preprocessing process, that includes a subsumption check in an equality graph and a high level planning. The forward reasoning in RHU-resolution may replace the role of the function substitution link.[9] That is, RHU-deduction without the function substitution link gets a proof. In order to control explosive generation of positive equalities by the forward reasoning, we haue put some restrictions on input clauses and k-pd links, and also have included a control strategy for a positive-positive linkage, like the set-of-support concept, A linking path between two end terms can be found by simple checking of linked unifiability using the concept of a linked unification. We tried to prevent redundant resolvents from generating by preprocessing using a subsumption check in the subsumption based eauality graph(SPD-Graph)so that the search space for possible RHU-resolution may be reduced.
Kim, Wonsook;Kim, Youngmin;Seo, Hae-Ae;Park, Jongseok
Journal of Gifted/Talented Education
/
v.23
no.5
/
pp.817-833
/
2013
The study aims to analyze Thomas Young's problem solving processes of analogical reasoning during the formation of the interference theory of light, and to draw its implications for secondary science education, particularly for enhancing creativity in science. The research method employed in the study was literature review of the papers which Young himself had written about sound wave and property of light. His thinking processes and specific features in his thought that were obtained through analysis of his papers about light are as follows: Young reconsidered Newton's experiments and observations, and reinterpreted Newton's results in the new viewpoints. Through this analysis, Young discovered that Newton's interpretation about his own experiments and observations was faulty in a certain point of view and new interpretation is necessary. Based on the data, it is hypothesized that colors observed on thin plates and colors appeared repeatedly on Newton's ring are appeared because of the effect of light interference. Young used analogical reasoning during the process of inference of similarity between sound and light. And he formulated an hypothesis on the interference of light through using abductive reasoning from interference of water wave, and proved the hypothesis by constructing an creative experimental device, which is called a critical experiment. It is implicated that the analogical reasoning and experimental devices for explaining the light interference which Young created and used can be utilized for school science education enhancing creativity in science.
Journal of the Korean Institute of Intelligent Systems
/
v.2
no.2
/
pp.3-33
/
1992
The successful application of fuzzy reasoning models to fuzzy control systems depends on a number of parameters, such as fuzzy membership functions, that are usually decided upon subjectively. It is shown ill this paper that the performance of fuzzy control systems call be improved if the fuzzy reasoning model is supplemented by a genetic-based learning mechanism. The genetic algorithm enables us to generate all optimal set of parameters for the fuzzy reasoning model based either on their initial subjective selection or on a random selection. It is shown that if knowledge of the domain is available, it is exploited by the genetic algorithm leading to an even better performance of the fuzzy controller.
Journal of Advanced Marine Engineering and Technology
/
v.19
no.4
/
pp.72-78
/
1995
The diffusion of fuzzy logic techniques into real applications requires specific software supports which save development time and reduce the programming effort. But we has been lack of a tool devoted to support the design of fuzzy controllers. In this paper, on the basis of the general fuzzy set and .alpha.-cut set decomposition of fuzzy sets, a set of fuzzy reasoning tool(FRT) devoted to support the design of fuzzy dontroller for servo systems is developed. The major features of this tool are: 1) It supports users to analyze fuzzy ingerence status based on input deta and expected results by three-D graphic display. 2) It supports users to prepare input data and expected result. 3) It supports users to tuned scaling factor of membership functions, rules and fuzzy inference. The paper shows how the suggested design tools are suitable to give a consistent answer to the tuning of fuzzy control system. This FRT is expected to exert good performance and devoted to support which the design of fuzzy controller is illustrated in the servo systems.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.4
no.2
/
pp.174-190
/
2010
In ubiquitous computing, invisible devices and software are connected to one another to provide convenient services to users [1][2]. Users hope to obtain a personalized service which is composed of customized devices among sharable devices in a ubiquitous smart space (which is called USS in this paper). However, the situations of each user are different and user preferences also are various. Although users request the same service in the same USS, the most suitable devices for composing the service are different for each user. For these user requirements, this paper proposes a device recommender system which infers and recommends customized devices for composing a user required service. The objective of this paper is the development of the systems for recommending devices through context-aware inference in peer-to-peer environments. For this goal, this paper considers the context and user preference. Also I implement a prototype system and test performance on the real ubiquitous mobile object (UMO).
Early research into category-based feature inference reported various phenomena in human thinking including typicality, diversity, similarity effects, etc. Later research discovered that participants' prior knowledge has an extensive influence on these sorts of reasoning. The current research tested the effects of causal knowledge on feature inference and conducted modeling on the results. Participants performed feature inference for categories consisted of four features where the features were connected either in common cause or common effect structure. The results showed typicality effects along with violations of causal Markov condition in common cause structure and causal discounting in common effect structure. To model the results, it was assumed that participants perform feature inference based on the difference between the probabilities of an exemplar with the target feature and an exemplar without the target feature (that is, $p(E_{F(X)}{\mid}Cat)-p(E_{F({\sim}X)}{\mid}Cat)$). Exemplar probabilities were computed based on causal model theory (Rehder, 2003) and applied to inference for target features. The results showed that the model predicts not only typicality effects but also violations of causal Markov condition and causal discounting observed in participants' data.
The Knowledge service system needs to infer a new knowledge from indicated knowledge to provide its effective service. Most of the Knowledge service system is expressed in terms of ontology. The volume of knowledge information in a real world is getting massive, so effective technique for massive data of ontology is drawing attention. This paper is to provide the method to infer massive data-ontology to the extent of RDFS, based on cloud computing environment, and evaluate its capability. RDFS inference suggested in this paper is focused on both the method applying MapReduce based on RDFS meta table, and the method of single use of cloud computing memory without using MapReduce under distributed file computing environment. Therefore, this paper explains basically the inference system structure of each technique, the meta table set-up according to RDFS inference rule, and the algorithm of inference strategy. In order to evaluate suggested method in this paper, we perform experiment with LUBM set which is formal data to evaluate ontology inference and search speed. In case LUBM6000, the RDFS inference technique based on meta table had required 13.75 minutes(inferring 1,042 triples per second) to conduct total inference, whereas the method applying the cloud computing memory had needed 7.24 minutes(inferring 1,979 triples per second) showing its speed twice faster.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.