• Title/Summary/Keyword: infectious clones

Search Result 43, Processing Time 0.027 seconds

Generation of Full-Length Infectious cDNA Clones of Middle East Respiratory Syndrome Coronavirus

  • Lee, Jeong Yoon;Bae, Sojung;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.999-1007
    • /
    • 2019
  • Middle East respiratory syndrome coronavirus (MERS-CoV) was first identified in Saudi Arabia in 2012 and related infection cases have been reported in over 20 countries. Roughly 10,000 human cases have so far been reported in total with fatality rates at up to 40%. The majority of cases have occurred in Saudi Arabia with mostly sporadic outbreaks outside the country except for the one in South Korea in 2015. The Korean MERS-CoV strain was isolated from the second Korean patient and its genome was fully sequenced and deposited. To develop virus-specific protective and therapeutic agents against the Korean isolate and to investigate molecular determinants of virus-host interactions, it is of paramount importance to generate its full-length cDNA. Here we report that two full-length cDNAs from a Korean patient-isolated MERS-CoV strain were generated by a combination of conventional cloning techniques and efficient Gibson assembly reactions. The full-length cDNAs were validated by restriction analysis and their sequence was verified by Sanger method. The resulting cDNA was efficiently transcribed in vitro and the T7 promoter-driven expression was robust. The resulting reverse genetic system will add to the published list of MERS-CoV cDNAs and facilitate the development of Korean isolate-specific antiviral measures.

Deep sequencing of B cell receptor repertoire

  • Kim, Daeun;Park, Daechan
    • BMB Reports
    • /
    • v.52 no.9
    • /
    • pp.540-547
    • /
    • 2019
  • Immune repertoire is a collection of enormously diverse adaptive immune cells within an individual. As the repertoire shapes and represents immunological conditions, identification of clones and characterization of diversity are critical for understanding how to protect ourselves against various illness such as infectious diseases and cancers. Over the past several years, fast growing technologies for high throughput sequencing have facilitated rapid advancement of repertoire research, enabling us to observe the diversity of repertoire at an unprecedented level. Here, we focus on B cell receptor (BCR) repertoire and review approaches to B cell isolation and sequencing library construction. These experiments should be carefully designed according to BCR regions to be interrogated, such as heavy chain full length, complementarity determining regions, and isotypes. We also highlight preprocessing steps to remove sequencing and PCR errors with unique molecular index and bioinformatics techniques. Due to the nature of massive sequence variation in BCR, caution is warranted when interpreting repertoire diversity from error-prone sequencing data. Furthermore, we provide a summary of statistical frameworks and bioinformatics tools for clonal evolution and diversity. Finally, we discuss limitations of current BCR-seq technologies and future perspectives on advances in repertoire sequencing.

Pathogenicity of a Korean isolate of Pepper mild mottle virus and development of full-length cDNA clone for infectious in vitro transcripts

  • J.Y. Yoon;Park, J.K.;Y.M. Yu;K.H. Ryu
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.143.3-144
    • /
    • 2003
  • A Korean isolate of Pepper mild mottle virus (PMMoV-Kr) was isolated from a diseased pepper crop in Chunchon, Korea. The isolate was biologically purified on Nicoticaa tabacum cv. Xanthi-nc by successive single local transfer steps, and propagated on N. tabacum cv. Samsun. PMMoV-Kr could systemically infect on N. glauca, N. benthmiana, N. occidentalis and Lycopersicon esculentum, which is typical of known isolates of PMMoV. PMMoV-Kr belongs to the pathotype P1,2 based on pepper-tobamoviral indicator experiments; Capsicn chinone harboring L3 gene revealed resistant (necrotic local lesion on inoculated leaf, HR) whereas L+, L1 and L2 pepper plants expressed susceptible reactions of mosaic systemic symptoms for the isolate. To confirm the pathology and delineate symptom determinant of the isolate, full-length cDNAs of PMMoV-Kr were amplified by RT-PCR with a primer set corresponding to the 5'- and 3'-ends of PMMoV. The RT-PCR molecules amplified from genome RNA of the isolate was cloned into the pUC18 vector. Full-length cDNA clones constructed under the control of the T7 RNA promoter could be successfully transcribed to produce in vitro transcript RNA. Infectivity of the capped transcripts and its progeny virus was verified by Western blot and RT-PCR analyses.

  • PDF

Construction of the Genomic Expression Library of Bacillus anthracis for the Immunomic Analysis (면역체 분석을 위한 탄저균 유전자 발현 라이브러리의 구축)

  • Park, Moon-Kyoo;Jung, Kyoung-Hwa;Kim, Yeon-Hee;Rhie, Gi-Eun;Chai, Young-Gyu;Yoon, Jang-W.
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.21-26
    • /
    • 2010
  • As the causative agent of Anthrax, Bacillus anthracis causes an acute fatal disease in herbivores such as cattle, sheep, and horses as well as humans. The therapeutics and prevention of anthrax currently available are based on antibiotics and the live attenuated vaccine strains, which may be problematic due to the emergency of antibiotic resistant strains or residual virulence in those vaccine strains. Therefore, it has been required to develop novel therapeutics and vaccines which are safer and applicable to humans. Recently, the development of the multivalent vaccine targeting both spores and vegetative cells of B. anthracis along with anthrax toxin has been reported. In our attempts to screen potential candidates for those multivalent vaccines, the whole genomic expression library of B. anthracis was constructed in this study. To the end, the partial digests of the genomic DNA from B. anthracis (ATCC 14578) with Sau3AI were ligated with the inducible pET30abc expression vectors, resulting in approximately $1{\times}10^5$ clones in E. coli BL21(DE3). The redundancy test by DNA nucleotide sequencing was performed for the randomly selected 111 clones and found 56 (50.5%) B. anthracis genes, 17 (15.3%) vector sequences, and 38 (34.2%) unknown genes with no sequence homology by BLAST. An inducible expression of the recombinant proteins was confirmed by Western blot. Interestingly, some clones could react with the antiserum against B. anthracis. These results imply that the whole genomic library constructed in this study can be applied for analyzing the immunomes of B. anthracis.

Molecular Aspects of Japanese Encephalitis Virus Persistent Infection in Mammalian Cells

  • Park Sun-Hee;Won Sung Yong;Park Soo-Young;Yoon Sung Wook;Han Jin Hyun;Jeong Yong Seok
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2000.05a
    • /
    • pp.23-36
    • /
    • 2000
  • Japanese encephalitis virus (JEV) is the causative agent of a mosquito-borne encephalitis and is transmitted to human via persistently infected mosquito vectors. Although the virus is known to cause only acute infection, there were reports that showed neurological sequelae, latent infection in peripheral mononuclear cells, and recurrence of the disease after acute encephalitis. Innate resistance of certain cell lines, abnormal SN1 expression of the virus, and anti-apoptotic effect of cullular bcl-2 have been suggested as probable causes of JEV persistence even in the absence of defective interfering (DI) particles. Although possible involvement of DI particles in JEV persistence was suggested, neither has a direct evidence for DI presence nor its molecular characterization been made. Two questions asked in this study are whether the DI virus plays any role in JEV persistent infection if it is associated with and what type of change(s) can be made in persistently infected cells to avoid apoptosis even with the continuous virus replication, DI-free standard stock of JEV was infected in BHK-21, Vero, and SW13 cells and serial high multiplicity passages were performed in order to generate DI particles. There different-sized DI RNA species which were defective in both structural and nonstructural protein coding genes. Rescued ORFs of the DI genome maintained in-frame and the presence of replicative intermediate or replicative form RNA of the DI particles confirmed their replication competence. On the other hand, several clones with JEV persistent infection were established from the cells survived acute infections during the passages. Timing of the DI virus generation during the passages seemed coincide to the appearance of persistently infected cells. The DI RNAs were identified in most of persistently infected cells and were observed throughout the cell maintenance. One of the cloned cell line maintained the viral persistence without DI RNA coreplication. The cells with viral persistence released the reduced but continuous infectious JEV particle for up to 9 months and were refractory to homologous virus superinfection but not to heterologous challenges. Unlike the cells with acute infection these cells were devoid of characteristic DNA fragmentation and JEV-induced apoptosis with or without homologous superinfection. Therefore, the DI RNA generated during JEV undiluted serial passage on mammalian cells was shown to be biologically active and it seemed to be responsible, at least in part, for the establishment and maintenance of the JEV persistence in mammalian cells. Viral persistence without DI RNA coreplication, as in one of the cell clones, supports that JEV persistent infection could be maintained with or without the presence of DI particles. In addition, the fact that the cells with JEV persistence were resistant against homologous virus superinfection, but not against heterologous one, suggests that different viruses have their own and independent pathway for cytopathogenesis even if viral cytopathic effect could be converged to an apoptosis after all.

  • PDF

Development of monoclonal antibodies against viral hemorrhagic septicemia virus (VHSV, genotype IVa), the causative agent of VHS (VHS (viral hemorrhagic septicemia)의 원인병원체인 VHSV (genotype IVa)에 대한 단클론 항체 개발)

  • Kong, Kyoung-Hui;Oh, Myung-Joo;Jang, Min-Seok;Kim, Choon-Sup;Kim, Wi-Sik
    • Journal of fish pathology
    • /
    • v.32 no.2
    • /
    • pp.59-67
    • /
    • 2019
  • We developed and subsequently characterized mouse antibodies (MAbs) against viral hemorrhagic septicemia virus (VHSV, genotype IVa), the causative agent of VHS. Five hybridoma clones secreting MAbs against VHSV were established. The MAbs recognized the glycoprotein (MAbs 2C10, 18H4, 23H6, and 30B7) and nucleocapsid protein (15E10) of VHSV by western blot analysis. All five MAbs reacted with VHSV-infected cells and tissue homogenates of VHSV-infected olive flounder (Paralichthys olivaceus) by western blot analysis. Whereas, no reactivity was observed in normal cells and tissue homogenates of normal olive flounder. Moreover, these MAbs reacted with VHSV, but did not react with other fish viruses (infectious hematopoietic necrosis virus, hirame rhabdovirus, spring viraemia of carp virus, infectious pancreatic necrosis virus, marine birnavirus, and nervous necrosis virus) by enzyme linked immunosorbent assay (ELISA). These results indicate that the MAbs are specific to VHSV and can be of value in VHSV detection.

The Interaction between HCV-Infected huh7.5 Cells and HCV-Specific T Cells (C형 간염 바이러스 감염 간암 세포주와 T 림프구의 상호작용에 대한 연구)

  • Kang, Hyojeung;Cho, Hyosun
    • Korean Journal of Microbiology
    • /
    • v.50 no.2
    • /
    • pp.169-172
    • /
    • 2014
  • Recently, Hepatitis C virus (HCV) replication system has been established using human hepatoma cells (huh cell) and a variety of HCV clones. In this study, we established an infectious HCV replication system using huh7.5 cells and J6/JFH1 clone (genotype 2a). In addition, we investigated the antigen presentation capability of HCV-infected huh7.5 cells to HCV-specific T cells. Interestingly, HCV-infected huh7.5 cells were not capable of activating HCV-specific T cells. However, huh7.5 cells stimulated by exogenous HCV peptide were able to activate HCV-specific T cells, which was shown to produce TNF-${\alpha}$ and IFN-${\gamma}$. We further examined if HCV infection has an inhibitory effect on the expression of MHC class I molecule of huh7.5 cells. We found that HCV infection did not change the expression level of MHC class I molecule on huh7.5 cells.

Identification of Actinobacillus pleuropneumoniae Genes Preferentially Expressed During Infection Using In Vivo-Induced Antigen Technology (IVIAT)

  • Zhang, Fei;Zhang, Yangyi;Wen, Xintian;Huang, Xiaobo;Wen, Yiping;Wu, Rui;Yan, Qigui;Huang, Yong;Ma, Xiaoping;Zhao, Qin;Cao, Sanjie
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1606-1613
    • /
    • 2015
  • Porcine pleuropneumonia is an infectious disease caused by Actinobacillus pleuropneumoniae. The identification of A. pleuropneumoniae genes, specially expressed in vivo, is a useful tool to reveal the mechanism of infection. IVIAT was used in this work to identify antigens expressed in vivo during A. pleuropneumoniae infection, using sera from individuals with chronic porcine pleuropneumonia. Sequencing of DNA inserts from positive clones showed 11 open reading frames with high homology to A. pleuropneumoniae genes. Based on sequence analysis, proteins encoded by these genes were involved in metabolism, replication, transcription regulation, and signal transduction. Moreover, three function-unknown proteins were also indentified in this work. Expression analysis using quantitative real-time PCR showed that most of the genes tested were up-regulated in vivo relative to their expression levels in vitro. IVI (in vivo-induced) genes that were amplified by PCR in different A. pleuropneumoniae strains showed that these genes could be detected in almost all of the strains. It is demonstrated that the identified IVI antigen may have important roles in the infection of A. pleuropneumoniae.

Alternanthera mosaic virus - an alternative 'model' potexvirus of broad relevance

  • Hammond, John;Kim, Ik-Hyun;Lim, Hyoun-Sub
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.2
    • /
    • pp.145-180
    • /
    • 2017
  • Alternanthera mosaic virus (AltMV) is a member of the genus Potexvirus which has been known for less than twenty years, and has been detected in Australasia, Europe, North and South America, and Asia. The natural host range to date includes species in at least twenty-four taxonomically diverse plant families, with species in at least four other families known to be infected experimentally. AltMV has been shown to differ from Potato virus X (PVX), the type member of the genus Potexvirus, in a number of ways, including the subcellular localization of the Triple Gene Block 3 (TGB3) protein and apparent absence of interactions between TGB3 and TGB2. Differences between AltMV variants have allowed identification of viral determinants of pathogenicity, and identification of residues involved in interactions with host proteins. Infectious clones of AltMV differing significantly in symptom severity and efficiency of RNA silencing suppression have been produced, suitable either for high level protein expression (with efficient RNA silencing suppression) or for Virus-Induced Gene Silencing (VIGS; with weaker RNA silencing suppression), demonstrating a range of utility not available with most other plant viral vectors. The difference in silencing suppression efficiency was shown to be due to a single amino acid residue substitution in TGB1, and to differences in subcellular localization of TGB1 to the nucleus and nucleolus. The current state of knowledge of AltMV biology, including host range, strain differentiation, host interactions, and utility as a plant viral vector for both protein expression and VIGS are summarized.

Impact of antimicrobial resistance in the $21^{st}$ century

  • Song, Jae-Hoon
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.3-6
    • /
    • 2000
  • Antimicrobial resistance has been a well-recognized problem ever since the introduction of penicillin into clinical use. History of antimicrobial development can be categorized based on the major antibiotics that had been developed against emerging resistant $pathogens^1$. In the first period from 1940 to 1960, penicillin was a dominating antibiotic called as a "magic bullet", although S.aureus armed with penicillinase led antimicrobial era to the second period in 1960s and 1970s. The second stage was characterized by broad-spectrum penicillins and early generation cephalosporins. During this period, nosocomial infections due to gram-negative bacilli became more prevalent, while those caused by S.aureus declined. A variety of new antimicrobial agents with distinct mechanism of action including new generation cephalosporins, monobactams, carbapenems, ${\beta}$-lactamase inhibitors, and quinolones characterized the third period from 1980s to 1990s. However, extensive use of wide variety of antibiotics in the community and hospitals has fueled the crisis in emerging antimicrobial resistance. Newly appeared drug-resistant Streptococcus pneumoniae (DRSP), vancomycin-resistant enterococci (VRE), extended-spectrum ${\beta}$-lactamase-producing Klebsiella, and VRSA have posed a serious threat in many parts of the world. Given the recent epidemiology of antimicrobial resistance and its clinical impact, there is no greater challenge related to emerging infections than the emergence of antibiotic resistance. Problems of antimicrobial resistance can be amplified by the fact that resistant clones or genes can spread within or between the species as well as to geographically distant areas which leads to a global concern$^2$. Antimicrobial resistance is primarily generated and promoted by increased use of antimicrobial agents. Unfortunately, as many as 50 % of prescriptions for antibiotics are reported to be inappropriate$^3$. Injudicious use of antibiotics even for viral upper respiratory infections is a universal phenomenon in every part of the world. The use of large quantities of antibiotics in the animal health industry and farming is another major factor contributing to selection of antibiotic resistance. In addition to these background factors, the tremendous increase in the immunocompromised hosts, popular use of invasive medical interventions, and increase in travel and mixing of human populations are contributing to the resurgence and spread of antimicrobial resistance$^4$. Antimicrobial resistance has critical impact on modem medicine both in clinical and economic aspect. Patients with previously treatable infections may have fatal outcome due to therapeutic failure that is unusual event no more. The potential economic impact of antimicrobial resistance is actually uncountable. With the increase in the problems of resistant organisms in the 21st century, however, additional health care costs for this problem must be enormously increasing.

  • PDF