• Title/Summary/Keyword: infectious cDNA

Search Result 101, Processing Time 0.028 seconds

Genetic Analysis of the VP2/NS Junction Region on Segment A of Marine Birnavirus Isolated from Cultured Flounder Paralichthys olivaceous

  • Joh, Seong-Joon;Kim, Jeong-Ho;Heo, Gang-Joon
    • Journal of Microbiology
    • /
    • v.38 no.1
    • /
    • pp.44-47
    • /
    • 2000
  • The cDNA of VP2/NS junction region on segment A of the marine birnavirus (MBV) isolated from flounder (DS strain) was amplified using the reverse transcription (RT)-polymerase chain reaction (PCR). Its cDNA nucleotide and deduced amino acid sequences were analyzed, and compared with the reference strains of MBV and infectious pancreatic necrosis virus (IPNV). Analyses of the nucleotide and deduced amino acid sequences revealed that the DS strain is very similar to the reference strains of MBV, distant from the IPNV.

  • PDF

Expression of Human Stem Cell Factor with Recombinant Baculovirus in BmN Cell Line and Silkworm

  • Xijie, Guo;Yongfeng, Jin;Mingguan, Yang;Yaozhou, Zhang
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.4 no.1
    • /
    • pp.51-56
    • /
    • 2002
  • A recombinant transfer vector pBacSCF was constructed by inserting huamn stem cell factor (hSCF) cDNA into plasmid pBacPAK8. BmN cells were co-transfected with modified Bombyx mori, nuclear polyhedrosis virus (BmBacPAK) DNA and the recmbinant transfer vector to construct a recombinant baculovirus containing hSCE gene. DNA dot blotting and RNA dot blotting demonstrated that the hSCE gene was contained in the recombinant virus and transcribed. The recombinant baculovirus was infectious to BmN cells and to silkworm. SDS-PAGE analysis showed a specific band of expressed product in the extract of infected cells and in the heamolymph of infected larvae. Bioactivity of the recombinant hSCE was determined with W-1 cell line and MTT colorimetric method in synergy with interlukin-3 (IL-3). These results revealed that the hSCF gene was over-expressed in cultured cells and lavae of silkworm.

Inhibition of HBV replication and gene expression in vitro and in vivo with a single AAV vector delivering two shRNA molecules

  • Li, Zhi;He, Ming-Liang;Yao, Hong;Dong, Qing-Ming;Chen, Yang-Chao;Chan, Chu-Yan;Zheng, Bo-Jian;Yuen, Kwok-Yung;Peng, Ying;Sun, Qiang;Yang, Xiao;Lin, Marie C.;Sung, Joseph J.Y.;Kung, Hsiang-Fu
    • BMB Reports
    • /
    • v.42 no.1
    • /
    • pp.59-64
    • /
    • 2009
  • Hepatitis B virus (HBV) infection is highly prevalent worldwide. The major challenge for current antiviral treatment is the elevated drug resistance that occurs via rapid viral mutagenesis. In this study, we developed AAV vectors to simultaneously deliver two or three shRNAs targeting different HBV-related genes. These vectors showed markedly better antiviral effects than ones that delivered a single shRNA in vitro. A dual shRNA expression vector (AAV-157i/1694i), which simultaneously expressed two shRNAs targeted the S and X genes of HBV, reduced HBsAg, HBeAg and HBV DNA levels by $87{\pm}4$, $80.3{\pm}2.6$ and $86.2{\pm}7%$ respectively, eight days post-transduction. In a mouse model of prophylactic treatment, HBsAg and HBeAg were reduced to undetectable levels and the serum HBV DNA level was reduced by at least 100 fold. These results indicate that AAV-157i/1694i generates potent anti-HBV effects and that the strategy of constructing multi-shRNA expression vectors may lead to enhanced anti-HBV efficacy and overcome the evading mechanism of the virus and thus the development of drug resistance.

Molecular Identification of Cryptosporidium viatorum Infection in a Patient Suffering from Unusual Cryptosporidiosis in West Bengal, India

  • Sardar, Sanjib Kumar;Ghosal, Ajanta;Saito-Nakano, Yumiko;Dutta, Shanta;Nozaki, Tomoyoshi;Ganguly, Sandipan
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.4
    • /
    • pp.409-413
    • /
    • 2021
  • In this study, we have collected and screened a total of 268 stool samples from diarrheal patients admitted to an Infectious disease hospital in Kolkata for the presence of Cryptosporidium spp. The initial diagnosis was carried out by microscopy followed by genus specific polymerase chain reaction assays based on 70 kDa heat shock proteins (HSP70). DNA sequencing of the amplified locus has been employed for determination of genetic diversity of the local isolates. Out of 268 collected samples, 12 (4.48%) were positive for Cryptosporidium spp. Sequences analysis of 70 kDa heat shock proteins locus in 12 Cryptosporidium local isolates revealed that 2.24% and 1.86% of samples were showing 99% to 100% identity with C. parvum and C. hominis. Along with the other 2 major species one recently described globally distributed pathogenic species Cryptosporidium viatorum has been identified. The HSP70 locus sequence of the isolate showed 100% similarity with a previously described isolate of C. viatorum (Accession No. JX978274.1, JX978273.1, and JN846706.1) present in GenBank.

Cloning, Sequencing and Expression of apxIA, IIA, IIIA of Actinobacillus pleuropneumoniae Isolated in Korea (국내 분리 흉막폐렴균의 apxIA, IIA, IIIA 유전자 Cloning, 염기서열 분석 및 단백질 발현)

  • Shin, Sung-jae;Cho, Young-wook;Yoo, Han-sang
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.2
    • /
    • pp.247-253
    • /
    • 2003
  • Actinobacillus pleuropneumoniae causes a highly contagious pleuropneumoniae in swine. The bacterium produces several virulence factors such as exotoxin, LPS, capsular polysaccharide, etc. Among them, the exotoxin, called Apx, has been focused as the major virulence factor, and the toxin consists of 4 gene cluster. apx CABD. apxA is the structural gene of toxin and has four different types, I, II, III, and IV. As the first step of development of a new subunit vaccine, the three different types of apxA gene were amplified from A. pleuropneumoniae isolated from Korea by PCR with primer designed based on the N- and C-terminal of the toxin. The sizes of apxIA, IIA and IIIA were 3,073, 2,971 and 3,159bps, respectively. The comparison of whole DNA sequences of apxIA, IIA and IIIA genes with those of the reference strain demonstrated 98%, 99% and 98% homology, respectively. In addition, the phylogenetic analysis was performed based on the amino acid sequences compared with 12 different RTX toxin family using the neighbor-joining method. ApxA proteins of Korean isolates were identical with reference strains in this study. All ApxA proteins were expressed in E. coli with pQE expression vector and identified using Western blot with polyclonal antibodies against culture supernatants of A. pleuropneumoniae serotype 2 or 5. The sizes of each expressed ApxA protein were about 120, 110, 125 kDa (M.W.), respectively. The results obtained in this study could be used for the future study to develop a new vaccine to porcine pleuropneumoniae.

Investigation of Deletion Variation and Methylation Patterns in the 5' LTR of Porcine Endogenous Retroviruses

  • Jung, K.C.;Simond, D.M.;Moran, C.;Hawthorne, W.J.;Jeon, J.T.;Jin, D.I.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.11
    • /
    • pp.1572-1575
    • /
    • 2008
  • The xenotransplantation of pig organs and cells can be related with a risk of transmission of infectious diseases to human. Previous findings indicate that the regulatory region of PERV for retroviral transcription, replication and integration into the cellular DNA is located on the 5' Long Terminal Repeat (LTR). The objective of this study is the investigation of methylation and deletion status of the PERV 5' LTR region which can be used for regulating PERV expression. We compared the sequences of genomic DNA and bisulfite-treated genomic DNA from PK-15 cells expressing PERV to observe the methylation status of the 5' LTR. Our results showed that the CpG sites of U3 were methylated and methylation was inconsistent in the R and U5 regions. Also, variable numbers of 18 bp repeats and 21 bp repeats were detected on 5' LTR by sequencing analysis. The consistent U3 methylation might be indicative of host suppression of expression of the retroviruses.

Development of DNA Vaccine Against Red Sea Bream Iridovirus (RSIV)

  • PARK SO-JIN;SEO HYO-JIN;SON JEONG HWA;KIM HYOUNG-JUN;KIM YUN-IM;KIM KI-HONG;NAM YOON-KWON;KIM SUNG-KOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.873-879
    • /
    • 2005
  • Red sea bream iridovirus (RSIV) obtained from infected rock bream was propagated by Bluegill fry-2 (BF-2) cell culture. The virus titer was determined as $10^{5.5}\;TCID_{50}/ml$ on confluent BF-2 cell monolayers. The integrin binding site of ORF 055L of infectious spleen and kidney necrosis virus (ISKNV) was selected for the construction of a primer to obtain the RSIV ORF 055L gene. The genes were amplified using RSIV gene lyzate by PCR. The homologies of the ORF 055L sequence of RSIV with ISKNV and rock bream iridovirus (RBIV) were approximately $96\%$ and $100\%$, respectively. DNA vaccine was constructed by cloning the ORF 055L of RSN into pcDNA 3.1 (+), containing a cytomegalovirus (CMV) promoter. For antibody production, pcDNA-055 DNA vaccine was injected to BALB/c mice. The production of antibodies against pcDNA-055 DNA vaccine was confirmed by the Western blot analysis. The antibodies produced by the pcDNA-055 DNA vaccine showed efficacy to neutralize the RSIV in the neutralization test in BF-2 cell culture.

Selection and identification of single-domain antibody against Peste des Petits Ruminants virus

  • Liu, Dan;Li, Lingxia;Cao, Xiaoan;Wu, Jinyan;Du, Guoyu;Shang, Youjun
    • Journal of Veterinary Science
    • /
    • v.22 no.4
    • /
    • pp.45.1-45.13
    • /
    • 2021
  • Background: Peste des petits ruminants (PPR) is an infectious disease caused by the peste des petits ruminants virus (PPRV) that mainly produces respiratory symptoms in affected animals, resulting in great losses in the world's agriculture industry every year. Single-domain variable heavy chain (VHH) antibody fragments, also referred to as nanobodies, have high expression yields and other advantages including ease of purification and high solubility. Objectives: The purpose of this study is to obtain a single-domain antibody with good reactivity and high specificity against PPRV. Methods: A VHH cDNA library was established by immunizing camels with PPRV vaccine, and the capacity and diversity of the library were examined. Four PPRV VHHs were selected, and the biological activity and antigen-binding capacity of the four VHHs were identified by western blot, indirect immunofluorescence, and enzyme-linked immunosorbent assay (ELISA) analyses. ELISA was used to identify whether the four VHHs were specific for PPRV, and VHH neutralization tests were carried out. ELISA and western blot analyses were used to identify which PPRV protein was targeted by VHH2. Results: The PPRV cDNA library was constructed successfully. The library capacity was greater than 2.0 × 106 cfu/mL, and the inserted fragment size was approximately 400 bp to 2000 bp. The average length of the cDNA library fragment was about 1000 bp, and the recombination rate was approximately 100%. Four single-domain antibody sequences were selected, and proteins expressed in the supernatant were obtained. The four VHHs were shown to have biological activity, close affinity to PPRV, and no cross-reaction with common sheep diseases. All four VHHs had neutralization activity, and VHH2 was specific to the PPRV M protein. Conclusions: The results of this preliminary research of PPRV VHHs showed that four screened VHH antibodies could be useful in future applications. This study provided new materials for inclusion in PPRV research.

ORF5a Protein of Porcine Reproductive and Respiratory Syndrome Virus is Indispensable for Virus Replication (PRRS 바이러스 ORF5a 단백질의기능학적역할)

  • Oh, Jongsuk;Lee, Changhee
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • In this study, a DNA-launched reverse genetics system was developed from a type 2 porcine reproductive and respiratory syndrome virus (PRRSV) strain, KNU-12. The complete genome of 15,412 nucleotides was assembled as a single cDNA clone and placed under the eukaryotic CMV promoter. Upon transfection of BHK-tailless pCD163 cells with a full-length cDNA clone, viable and infectious type 2 progeny PRRSV were rescued. The reconstituted virus was found to maintain growth properties similar to those of the parental virus in porcine alveolar macrophage (PAM) cells. With the availability of this type 2 PRRSV infectious clone, we first explored the biological relevance of ORF5a in the PRRSV replication cycle. Therefore, we used a PRRSV reverse genetics system to generate an ORF5a knockout mutant clone by changing the ORF5a translation start codon and introducing a stop codon at the 7th codon of ORF5a. The ORF5a knockout mutant was found to exhibit a lack of infectivity in both BHK-tailless pCD163 and PAM-pCD163 cells, suggesting that inactivation of ORF5a expression is lethal for infectious virus production. In order to restore the ORF5a gene-deleted PRRSV, complementing cell lines were established to stably express the ORF5a protein of PRRSV. ORF5a-expressing cells were capable of supporting the production of the replicationdefective virus, indicating complementation of the impaired ORF5a gene function of PRRSV in trans.