Early warning services for crop diseases are valuable when they provide timely forecasts that farmers can utilize to inform their disease management decisions. In South Korea, collaborative disease controls that utilize unmanned aerial vehicles are commonly performed for most rice paddies. However, such controls could benefit from seasonal disease early warnings with a lead time of a few months. As a first step to establish a seasonal disease early warning service using seasonal climate forecasts, we developed the EPIRICE Daily Risk Model for rice blast by extracting and modifying the core infection algorithms of the EPIRICE model. The daily risk scores generated by the EPIRICE Daily Risk Model were successfully converted into a realistic and measurable disease value through statistical analyses with 13 rice blast incidence datasets, and subsequently validated using the data from another rice blast experiment conducted in Icheon, South Korea, from 1974 to 2000. The sensitivity of the model to air temperature, relative humidity, and precipitation input variables was examined, and the relative humidity resulted in the most sensitive response from the model. Overall, our results indicate that the EPIRICE Daily Risk Model can be used to produce potential disease risk predictions for the seasonal disease early warning service.
International Journal of Computer Science & Network Security
/
v.22
no.10
/
pp.352-358
/
2022
In this paper, we study the relationship between infection rates of covid 19 and the precautionary measures and strict protocols taken by Saudi Arabia to combat the spread of the coronavirus disease and minimize the number of infected people. Based on the infection rates and the timetable of precautionary measures, the best framework of precautionary measures was identified by applying the traveling salesman problem (TSP) that relies on ant colony optimization (ACO) algorithms. The proposed algorithm was applied to daily infected cases data in Saudi Arabia during three periods of precautionary measures: partial curfew, whole curfew, and gatherings penalties. The results showed the partial curfew and the whole curfew for some cities have the minimum total cases over other precautionary measures. The gatherings penalties had no real effect in reducing infected cases as the other two precautionary measures. Therefore, in future similar circumstances, we recommend first applying the partial curfew and the whole curfew for some cities, and not considering the gatherings penalties as an effective precautionary measure. We also recommend re-study the application of the grouping penalty, to identify the reasons behind the lack of its effectiveness in reducing the number of infected cases.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.15
no.2
/
pp.117-123
/
2022
Currently the number of COVID-19 cases is increasing rapidly around the world. One way to restrict the spread of COVID-19 infection is to find confirmed cases using rapid diagnosis. The previously proposed group testing problem assumed without measurement noise, but recently, false positive and false negative cases have occurred during COVID-19 testing. In this paper, we define the noisy group testing problem and analyze how much measurement noise affects the performance. In this paper, we show that the group testing system should be designed to be less susceptible to measurement noise when conducting group testing with a low positive rate of COVID-19 infection. And compared with other developed reconstruction algorithms, our proposed algorithm shows superior performance in noisy group testing.
Journal of the Korean Association of Oral and Maxillofacial Surgeons
/
v.50
no.4
/
pp.216-221
/
2024
Objectives: This study aimed to develop and validate a model to predict the need for intensive care unit (ICU) admission in patients with dental infections using an automated machine learning (ML) program called H2O-AutoML. Materials and Methods: Two models were created using only the information available at the initial examination. Model 1 was parameterized with only clinical symptoms and blood tests, excluding contrast-enhanced multi-detector computed tomography (MDCT) images available at the initial visit, whereas model 2 was created with the addition of the MDCT information to the model 1 parameters. Although model 2 was expected to be superior to model 1, we wanted to independently determine this conclusion. A total of 210 patients who visited the Department of Oral and Maxillofacial Surgery at the Dankook University Dental Hospital from March 2013 to August 2023 was included in this study. The patients' demographic characteristics (sex, age, and place of residence), systemic factors (hypertension, diabetes mellitus [DM], kidney disease, liver disease, heart disease, anticoagulation therapy, and osteoporosis), local factors (smoking status, site of infection, postoperative wound infection, dysphagia, odynophagia, and trismus), and factors known from initial blood tests were obtained from their medical charts and retrospectively reviewed. Results: The generalized linear model algorithm provided the best diagnostic accuracy, with an area under the receiver operating characteristic values of 0.8289 in model 1 and 0.8415 in model 2. In both models, the C-reactive protein level was the most important variable, followed by DM. Conclusion: This study provides unprecedented data on the use of ML for successful prediction of ICU admission based on initial examination results. These findings will considerably contribute to the development of the field of dentistry, especially oral and maxillofacial surgery.
Kim, Ji Hoon;Kim, Eui Sik;Hwang, Jae Ha;Kim, Kwang Seog;Lee, Sam Yong
Archives of Plastic Surgery
/
v.36
no.4
/
pp.397-405
/
2009
Purpose: Soft tissue defect of anterior chest wall is caused by trauma, infection, tumors and irradiation. To reconstruct damaged anterior chest wall does require to consider the patient's body condition, the cause, the location, the depth and the size of deletion, the circulation of surrounding tissue and minimization of functional and cosmetic disability. In this report, we suggest the algorithm of configuration for reconstruction methods. Methods: A retrospective study of 20 patients who underwent anterior chest wall reconstruction with pedicled musculocutaneous flap and fasciocutaneous flap was conducted. We collected the information of the patient's body condition, the cause, the size, the depth and the location of deletion, implemented flap and complication. We observed and evaluated flap compatibility, functional and cosmetic results. Patients completed survey about the extent to their satisfaction. Result: Follow up period after surgery was from 6 to 26 months, survival of flap were confirmed in all of patients' case. Two cases of local necrosis, one case of wound disruption were reported, but all these were cured by the debridement and primary closure. One hematoma and one seroma formation were observed in donor site. Longer surgery time, more bleeding amount and more transfusion volume were reported in the group of musculocutenous flap. Conclusion: Long term follow up result showed the successful reconstruction in all patients without recurrence and with minimal donor site morbidity. In addition, the patients' satisfaction for cosmetic and functional results were scaled relatively higher. This confirmed the importance of reconstruction algorithm for the chest wall reconstruction.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.7
/
pp.127-132
/
2019
Influenza is an infectious disease caused by an influenza virus with symptoms of high fever and headache. Since influenza especially mutates into multiple subtypes in the carrier's body, it is a serious threat for mankind such as Spanish influenza. The treatment of influenza infection mandates the use of antiviral drugs through rapid diagnostic test. Generally, immunochromatography-based rapid influenza diagnostic tests are used for rapid diagnosis in an emergency. In this paper, we propose an influenza analysis algorithm based on image processing to examine a large number of patients suspected of being infected with influenza. Also, we propose a robust influenza analysis algorithm based on the joint cumulative mass function under varying radiometric conditions such as illuminant and exposure differences. Simulation results show that the proposed algorithm significantly reduces the error of influenza diagnosis under different radiometric conditions.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.2
/
pp.193-198
/
2022
Recently, place that you need to check wearing mask and body temperature to prevent the proliferation of COVID-19 increased. But these things often measured by man manually or by machine one by one, result may be different by measuring ways, so it wastes workforce. Also, the machine generally just measures the highest temperature of the face, criteria for fever can't be trusted too. A bottleneck may occur due to crowding of people at the entrance, and because most of the measurement sites are at one entrance, it is inconvenient to track the movement of COVID-19 Confirmed cases. Thus, in this study, we intend to propose a method for suppressing the spread of infection by automatically classifying and displaying in real time using camera, thermal camera, Haar Cascade, and result selection algorithm.
Over the last decade, avian influenza (AI) has been considered an emerging disease that would become the next pandemic, particularly in countries like South Korea, with continuous animal outbreaks. In this situation, risk assessment is highly needed to prevent and prepare for human infection with AI. Thus, we developed the risk assessment matrix for a high-risk area of human infection with AI in South Korea based on the notion that risk is the multiplication of hazards with vulnerability. This matrix consisted of highly pathogenic avian influenza (HPAI) in poultry farms and the number of poultry-associated production facilities assumed as hazards of avian influenza and vulnerability, respectively. The average number of HPAI in poultry farms at the 229-municipal level as the hazard axis of the matrix was predicted using a negative binomial regression with nationwide outbreaks data from 2003 to 2018. The two components of the matrix were classified into five groups using the K-means clustering algorithm and multiplied, consequently producing the area-specific risk level of human infection. As a result, Naju-si, Jeongeup-si, and Namwon-si were categorized as high-risk areas for human infection with AI. These findings would contribute to designing the policies for human infection to minimize socio-economic damages.
T cells induce immune responses and thereby eliminate infected micro-organisms when peptides from the microbial proteins are bound to HLAs in the host cell surfaces, It is known that the more stable the binding of peptide to HLA is, the stronger the T cell response gets to remove more effectively the source of infection. Accordingly, if peptides (HLA binder) which can be bound stably to a certain HLA are found, those peptieds are utilized to the development of peptide vaccine to prevent infectious diseases or even to cancer. However, HLA is highly polymorphic so that HLA has a large number of alleles with some frequencies even in one population. Therefore, it is very inefficient to find the peptides stably bound to a number of HLAs by testing random possible peptides for all the various alleles frequent in the population. In order to solve this problem, computational methods have recently been developed to predict peptides which are stably bound to a certain HLA. These methods could markedly decrease the number of candidate peptides to be examined by biological experiments. Accordingly, this paper not only introduces a method of machine learning to predict peptides binding to an HLA, but also suggests a new prediction model so called 'knowledge-based genetic algorithm' that has never been tried for HLA binding peptide prediction. Although based on genetic algorithm (GA). it showed more enhanced performance than GA by incorporating expert knowledge in the process of the algorithm. Furthermore, it could extract rules predicting the binding peptide of the HLA alleles common in Koreans.
Yong Joong Kim;Byung Sang Choi;Ki Seop Lee;Kyung Kwon Jung
Convergence Security Journal
/
v.22
no.2
/
pp.21-26
/
2022
Wearing face masks is an effective measure to prevent COVID-19 infection. Infrared thermal image based temperature measurement and identity recognition system has been widely used in many large enterprises and universities in China, so it is totally necessary to research the face mask detection of thermal infrared imaging. Recently introduced MTCNN (Multi-task Cascaded Convolutional Networks)presents a conceptually simple, flexible, general framework for instance segmentation of objects. In this paper, we propose an algorithm for efficiently searching objects of images, while creating a segmentation of heat generation part for an instance which is a heating element in a heat sensed image acquired from a thermal infrared camera. This method called a mask MTCNN is an algorithm that extends MTCNN by adding a branch for predicting an object mask in parallel with an existing branch for recognition of a bounding box. It is easy to generalize the R-CNN to other tasks. In this paper, we proposed an infrared image detection algorithm based on R-CNN and detect heating elements which can not be distinguished by RGB images.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.