• Title/Summary/Keyword: infected soil

Search Result 282, Processing Time 0.026 seconds

Occurrence of Stem Rot of Valeriana fauriei Caused by Sclerotium rolfsii (Sclerotium rolfsii에 의한 쥐오줌풀 흰비단병 발생)

  • Kwon, Jin-Hyeuk;Jeong, Seon-Gi;Jin, Young-Min;Song, Won-Doo
    • The Korean Journal of Mycology
    • /
    • v.38 no.2
    • /
    • pp.205-207
    • /
    • 2010
  • Stem and petiole rot symptoms of Valeriana fauriei occurred sporadically in the herb exhibition field in Gyeongsangnam-do Agricultural Research and Extension Services, Hamyang-gun, Gyeongnam Province in Korea. The typical symptom is water-soaking on the stem, rotting, wilting, blighting and the infected plants eventually died. White mycelial mats spreaded over lesions, and then sclerotia were formed on the infected plant parts and near soil surface line. On the basis of mycological characteristics and pathogenicity to host plants, this fungus was identified as Sclerotium rolfsii. This is the first report of stem rot on Valeriana fauriei caused by Sclerotium rolfsii in Korea.

Isolation of Nine Bacteriophages Shown Effective against Erwinia amylovora in Korea

  • Park, Jungkum;Kim, Byeori;Song, Sujin;Lee, Yong Whan;Roh, Eunjung
    • The Plant Pathology Journal
    • /
    • v.38 no.3
    • /
    • pp.248-253
    • /
    • 2022
  • Erwinia amylovora is a devastating bacterial plant pathogen that infects Rosaceae including apple and pear and causes fire blight. Bacteriophages have been considered as a biological control agent for preventing bacterial infections of plants. In this study, nine bacteriophages (ΦFifi011, ΦFifi044, ΦFifi051, ΦFifi067, ΦFifi106, ΦFifi287, ΦFifi318, ΦFifi450, and ΦFifi451) were isolated from soil and water samples in seven orchards with fire blight in Korea. The genetic diversity of bacteriophage isolates was confirmed through restriction fragment length polymorphism pattern analysis. Host range of the nine phages was tested against 45 E. amylovora strains and 14 E. pyrifoliae strains and nine other bacterial strains. Among the nine phages, ΦFifi044 and ΦFifi451 infected and lysed E. amylovora only. And the remaining seven phages infected both E. amylovora and E. pyrifoliae. The results suggest that the isolated phages were different from each other and effective to control E. amylovora, providing a basis to develop biological agents and utilizing phage cocktails.

Trichuris trichiura Infection Diagnosed by Colonoscopy: Case Reports and Review of Literature

  • Ok, Kyung-Sun;Kim, You-Sun;Song, Jung-Hoon;Lee, Jin-Ho;Ryu, Soo-Hyung;Lee, Jung-Hwan;Moon, Jeong-Seop;Whang, Dong-Hee;Lee, Hye-Kyung
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.3
    • /
    • pp.275-280
    • /
    • 2009
  • Trichuris trichiura, commonly referred to as a whipworm, has a worldwide distribution, particularly among countries with warm, humid climates. In Korea, trichuriasis was a highly prevalent soil-transmitted helminthiasis until the 1970s. However, the nationwide prevalence decreased to 0.02% in 2004 as a result of national control activities and improvement in the socioeconomic status of Koreans. Most infected individuals have no distinct symptoms, if lightly infected. The diagnosis is typically confirmed by detection of T. trichiura eggs on examination of a stool sample; few reports have described detection of the parasite during colonoscopy. Recently, we managed 4 patients with trichuriasis who were diagnosed by detection of the parasite on colonoscopy, and we reviewed the literature on the colonoscopic diagnosis of T. trichiura in Korea. We suggest that colonoscopy might be a useful diagnostic tool, especially when infected by only a few male worms with no eggs in the stool.

New root rot disease of Panax ginseng due to Ditylenchus destructor Thorne (감자썩이선충 (Ditylenchus destructor)에 의한 인삼의 새로운 근부병)

  • Ohh Seung H.;Lee S.K.;Lee J.H.;Han S.C.
    • Korean journal of applied entomology
    • /
    • v.22 no.3 s.56
    • /
    • pp.181-185
    • /
    • 1983
  • Ditylenchus destructor Thorne 1945 was found to be the causal organism of the new root rot disease of Panax ginseng, which occurred extensively in Dongseong area of Cheolweon-gun, Gangweon Province, Korea in 1982. Thirty-six percent of the investigated fields was damaged due to the potato rot nematode. Infected roots showed brown discoloration of cortex and suberization outside the cambium. Cortex of the severly infected roots became sponge-like in texture and cavity was produced in the central portion of the root. Only the severely infected ginseng plants exhibited sympotoms of sudden wilting of leaves. The number of potato rot nematode in such field soils was $8.5\~222/30g$ soil, while there was no such symptoms on leaves if the number was less than 7.

  • PDF

Pathogenic free-living amoebae in Korea

  • Shin, Ho-Joon;Im, Kyung-Il
    • Parasites, Hosts and Diseases
    • /
    • v.42 no.3
    • /
    • pp.93-119
    • /
    • 2004
  • Acanthamoeba and Naegleria are widely distributed in fresh water, soil and dust throughout the world, and cause meningoencephalitis or keratoconjunctivitis in humans and other mammals. Korean isolates, namely, Naegleria sp. YM-1 and Acanthamoeba sp. YM-2, YM-3, YM-4, YM-5, YM-6 and YM-7, were collected from sewage, water puddles, a storage reservoir, the gills of a fresh water fish, and by corneal washing. These isolates were categorized into three groups based on the mortalities of infected mice namely, highly virulent (YM-4), moderately virulent (YM-2, YM-5 and YM-7) and nonpathogenic (YM-3). In addition, a new species of Acanthamoeba was isolated from a freshwater fish in Korea and tentatively named Korean isolate YM-4. The morphologic characters of its cysts were similar to those of A. culbertsoni and A. royreba, which were previously designated as Acanthamoeba group III. Based on experimentally infected mouse mortality, Acanthamoeba YM-4 was highly virulent. The isoenzymes profile of Acanthamoeba YM-4 was similar to that of A. royreba. Moreover, an anti-Acanthamoeba YM-4 monoclonal anti-body reacted only with Acanthamoeba YM-4, and not with A. culbertsoni. Random amplified polymorphic DNA marker analysis and RFLP analysis of mitochondrial DNA and of a 188 small subunit ribosomal RNA, placed Acanthamoeba YM-4 in a separate cluster based on phylogenic distances. Thus Acanthamoeba YM-4 was identified as a new species, and assigned Acanthamoeba sohi. Up to the year 2002 in Korea, two clinical cases were found to be infected with Acanthamoeba spp. These patients died of meningoencephalitis. In addition, one case of Acanthamoeba pneumonia with an immunodeficient status was reported and Acanthamoeba was detected in several cases of chronic relapsing corneal ulcer, chronic conjunctivitis, and keratitis.

Survey of Field Conditions of Clubroot Disease Incidence of Chinese Cabbage in Major Production Areas and Ecology of Root Gall Development (배추무사마귀병 발생실태와 뿌리혹의 생성생태)

  • 김충회
    • Plant Disease and Agriculture
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 1999
  • In 1997 surveys 82 out of 180 crucifer fields were infected with clubroot disease in a range of 1-100% of diseased plants and among crucifier crops Chinese cabbage was the most severe, In cropping systems Chinese cabbage-monocropping of Chinese cabbage-radish were found to be most common in major Chinese cabbage production areas. Welsh onion squash or paddy rice were also planted between cropping of Chinese cabbage. Paddy fields converted to upland were lowered in incidence of clubroot disease and fields with loam to silty loam soil were more severe in disease than those with sandy soil. Soil pH and organic contents were nor related to clubroot disease severity. Soil fauua such as total fungi bacteria actinomyces Pseudomonads and Bascillus were not correlated with severity of the disease. Root rall development on Chinese cabbage seedlings was initifially observed under a microscope 13 days after inoculation with Plasmodiophora brassicae but 18 days by naked eyes after inoculation. Root galls were formed mostly around collar roots and gradually spread to main root lateral roots and secondary root branches. Root galls started to enlarge greatly in size and weight from 23 days after inoculation. Chinese cabbage plants at mid-growth stage with root gall development were reduced to 1/2 of that of healthy plants in number of leaves 1/4-1/5 in above ground fresh weight 1/6 in root length but increased to 3 times in diameter of collar root. Diseased plants had little root hairs. Diseased Chinese cabbage plants at harvest were reduced by 9,1-11.8% in head weight compared to healthy plants a positive correlation was observed between root and head weight but those relationships were rot found in the diseased plants.

  • PDF

Fusarium spp. Isolated from Seed, Root and Cultivated Soil of Phaseouls vidissimus and Their Pathogenicity (녹두종자, 뿌리와 녹두 재배토양에서 분리된 Fusarium spp.와 병원성)

  • Paik Su Bong;Do Eun Su
    • Korean Journal Plant Pathology
    • /
    • v.3 no.1
    • /
    • pp.8-12
    • /
    • 1987
  • Fusarium oxysporum, F. moniliforme, F. solani, F. equiseti, F. semitectum, and F. sporotrichioides were detected from seeds, roots and cultivated soil of Phaseolous vidissimus collected from Kyung-gi Provincial Rural Development Administration. The rate of seedling desease incidence was $60\%$ by testing of seed germination using a large petri-dish. According to the blotter method, F. moniliforme showed $7\%$ infection at seed-coat and $2\%$ at cotyledon and embryo. Their pathogenicities of F. moniliforme, F. semitectum, F. equiseti, and F. sporotrichioides isolated from seeds were recognized on seedlings by water-agar test tube methods. F. oxysporum and F. solani isolated from infected-roots had their pathogenicity by water-agar test tube method but were weakly pathogenic by soil treatment method. Their pathogenicities of F. oxysporum. F. solani and F. uiseti isolated from cultivated-soil were recognized by water-agar test tube method. These F. oxysporum and equiseti isolates had their pathogenicities but F. solani was weakly pathogenic by soil treatment method.

  • PDF

Root Colonization by Beneficial Pseudomonas spp. and Bioassay of Suppression of Fusarium Wilt of Radish (유용 Pseudomonas 종의 근면점유와 무우 Fusarium시들음병의 억제에 관한 생물학적 정량)

  • Lee, Min-Woong
    • The Korean Journal of Mycology
    • /
    • v.25 no.1 s.80
    • /
    • pp.10-19
    • /
    • 1997
  • Fusarium wilt of radish (Raphanus sativus L.) is caused by the Fusarium oxysporum f. sp. raphani (FOR) which mainly attacks Raphanus spp. The pathogen is a soil-borne and forms chlamydospores in infected plant residues in soil. Infected pathogen colonizes the vascular tissue, leading to necrosis of the vascular tissue. Growth promoting beneficial organisms such as Pseudomonas fluorescens WCS374 (strain WCS374), P. putida RE10 (strain RE10) and Pseudomonas sp. EN415 (strain EN415) were used for microorganisms-mediated induction of systemic resistance in radish against Fusarium wilt. In this bioassy, the pathogens and bacteria were treated into soil separately or concurrently, and mixed the bacteria with the different level of combination. Significant suppression of the disease by bacterial treatments was generally observed in pot bioassy. The disease incidence of the control recorded 46.5% in the internal observation and 21.1% in the external observation, respectively. The disease incidence of P. putida RE10 recorded 12.2% in the internal observation and 7.8% in the external observation, respectively. However, the disease incidence of P. fluorescens WCS374 which was proved to be highly suppressive to Fusarium wilt indicated 45.6% in the internal observation and 27.8% in the external observation, respectively. The disease incidence of P. putida RE10 mixed with P. fluorescens WCS374 or Pseudomonas sp. EN415 was in the range of 10.0-22.1%. On the other hand, the disease incidence of P. putida RE10 mixed with Pseudomonas sp. EN415 was in the range of 7.8-20.2%. The colonization by FOR was observed in the range of $2.4-5.1{\times}10^3/g$ on the root surface and $0.7-1.3{\times}10^3/g$ in the soil, but the numbers were not statistically different. As compared with $3.8{\times}10^3/g$ root of the control, the colonization of infested ROR indicated $2.9{\times}10^3/g$ root in separate treatments of P. putida RE10, and less than $3.8{\times}10^3/g$ root of the control. Also, the colonization of FOR recorded $5.1{\times}10^3/g$ root in mixed treatments of 3 bacterial strains such as P. putida RE10, P. fluorescens WCS374 and Pseudomonas sp. EN415. The colonization of FOR in soil was less than that of FOR in root part. Based on soil or root part, the colonization of ROR didn't indicate a significant difference. The colonization of introduced 3 fluorescent pseudomonads was observed in the range of $2.3-4.0{\times}10^7/g$ in the root surface and $0.9-1.8{\times}10^7/g$ in soil, but the bacterial densities were significantly different. When growth promoting organisms were introduced into the soil, the population of Pseudomonas sp. in the root part treated with P. putida RE10 was similar in number to the control and recorded the low numerical value as compared with any other treatments. The population density of Pseudomonas sp. in the treatment of P. putida RE10 indicated significant differences in the root part, but didn't show significant differences in soil. The population densities of infested FOR and introduced bacteria on the root were high in contrast to those of soil. P. putida RE10 and Pseudomonas sp. EN415 used in this experiment appeared to induce the resistance of the host against Fusarium wilt.

  • PDF

Soil Chemical Characteristics and Comparison with Infested Status of Nematode(Meloidogyne spp.) in Plastic House Continuously Cultivated Oriental Melon in Songju (성주 지역 시설참외 연작지의 토양특성 및 토양선충 변화)

  • Jun, Han-Sik;Park, Woo-chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.2
    • /
    • pp.127-132
    • /
    • 2001
  • This study was conducted for ten years to evaluate the effective soil management for preventing the infection of root-knot nematode in the field of continuous cultivation with oriental melon under plastic house in Songju area of kyongbuk province. The content of available phosphate, total nitrogen, organic matter, CEC, and exchangeable base in the soil increased with the increase of continuous cultivation year. Especially salt content in the soil increased form 1.2 to 4.55 mS/cm and the yield of oriental melon dramatically decreased with the continuous cultivation year. The number of root-knot nematode was 91 per $300\;cm^3$ of soil in the field of continuous cultivation for 3 years and showed slight damage on the oriental melon, but it was 518 in the field of $4{\sim}6$ years continuous cultivation and showed that 50% of plants died in August, and the yield of late season was less than 50% compared to normal plant. For the seasonal changes in infection rate of root-knot nematode on oriental melon plant, 15% of the normal plant was infected by nematode in February and increased gradually by $10{\sim}20%$ per month, 60% of plants was infected in July. The density of root-knot nematode nymph was 167 in February and increased to 1,625 in August. The infection rate of nematode was 35%, and the number of nematode was about 54 in nursery soil originated from paddy soil, upland soil, and river sand. There were no relationship between the number of nematode and available phosphate or exchangeable base in the soil of plastichouse where oriental melon plants were grown.

  • PDF

Effects of Irrigation and Ginseng Root Residue on Root Rot Disease of 2-Years-Old Ginseng and Soil Microbial Community in the Continuous Cropping Soil of Ginseng (인삼 연작토양에서 관수 및 인삼뿌리 잔사물이 토양 미생물상 및 뿌리썩음병 발생에 미치는 영향)

  • Lee, Sung Woo;Lee, Seung Ho;Seo, Moon Won;Park, Kyung Hoon;Jang, In Bok
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.5
    • /
    • pp.345-353
    • /
    • 2018
  • Background: Some phenolics detected in the soil may inhibit the seed germination and seedling growth of ginseng (Panax ginseng). This study investigated the effect of irrigation and ginseng root residue addition on the soil microbial community and root rot disease in 2-year-old ginseng. Methods and Results: Each $20{\ell}$ pot was filled with soil infected with ginseng root rot pathogens, and irrigated daily with $2{\ell}$ of water for one month. After the irrigation treatment, ginseng fine root powder was mixed with the irrigated soil at a rate of 20 g per pot. In descending order, ${NO_3}^-$, electric conductivity (EC), exchangeable Na (Ex. Na) and K (Ex. K) decreased due to irrigation. In descending order, ${NO_3}^-$, EC, Ex. K, and available $P_2O_5$ increased with the additon of ginseng powder to the soil. The abundance of Trichoderma crassum decreased with irrigation, but increased again with the incorporation of ginseng powder. The abundance of Haematonectria haematococca increased with irrigation, but decreased with the incorporation of ginseng powder. The abundance of Cylindrocarpon spp. and Fusarium spp., which cause ginseng root rot, increased with the incorporation of ginseng powder. The abundance of Arthrobacter oryzae and Streptomyces lavendulae increased with irrigation. The abundance of Streptomyces lavendulae decreased, and that of Arthrobacter spp. increased, with the incorporation of ginseng powder. Aerial growth of ginseng was promoted by irrigation, and ginseng root rot increased with the incorporation of ginseng powder. Conclusions: Ginseng root residues in the soil affected soil nutrients and microorganisms, and promoted ginseng root rot, but did not affect the aerial growth of ginseng.