• 제목/요약/키워드: inertial coordination

검색결과 5건 처리시간 0.021초

A Localization Algorithm for Underwater Wireless Sensor Networks Based on Ranging Correction and Inertial Coordination

  • Guo, Ying;Kang, Xiaoyue;Han, Qinghe;Wang, Jingjing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권10호
    • /
    • pp.4971-4987
    • /
    • 2019
  • Node localization is the basic task of underwater wireless sensor networks (UWSNs). Most of the existing underwater localization methods rely on ranging accuracy. Due to the special environment conditions in the ocean, beacon nodes are difficult to deploy accurately. The narrow bandwidth and high delay of the underwater acoustic communication channel lead to large errors. In order to reduce the ranging error and improve the positioning accuracy, we propose a localization algorithm based on ranging correction and inertial coordination. The algorithm can be divided into two parts, Range Correction based Localization algorithm (RCL) and Inertial Coordination based Localization algorithm (ICL). RCL uses the geometric relationship between the node positions to correct the ranging error and obtain the exact node position. However, when the unknown node deviates from the deployment area with the movement of the water flow, it cannot communicate with enough beacon nodes in a certain period of time. In this case, the node uses ICL algorithm to combine position data with motion information of neighbor nodes to update its position. The simulation results show that the proposed algorithm greatly improves the positioning accuracy of unknown nodes compared with the existing localization methods.

Design and Implementation of 30" Geometry PIG

  • Kim, Dong-Kyu;Cho, Sung-Ho;Park, Seoung-Soo;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권5호
    • /
    • pp.629-636
    • /
    • 2003
  • This paper introduces the developed geometry PIG (Pipeline Inspection Gauge), one of several ILI (In-Line Inspection) tools, which provide a full picture of the pipeline from only single pass, and has compact size of the electronic device with not only low power consumption but also rapid response of sensors such as calipers, IMU and odometer. This tool is equipped with the several sensor systems. Caliper sensors measure the pipeline internal diameter, ovality and dent size and shape with high accuracy. The IMU (Inertial Measurement Unit) measures the precise trajectory of the PIG during its traverse of the pipeline. The IMU also provide three-dimensional coordination in space from measurement of inertial acceleration and angular rate. Three odometers mounted on the PIG body provide the distance moved along the line and instantaneous velocity during the PIG run. The datum measured by the sensor systems are stored in on-board solid state memory and magnetic tape devices. There is an electromagnetic transmitter at the back end of the tool, the transmitter enables the inspection operators to keep tracking the tool while it travels through the pipeline. An experiment was fulfilled in pull-rig facility and was adopted from Incheon LT (LNG Terminal) to Namdong GS (Governor Station) line, 13 km length.

Observation of the Earth's Magnetic field from KOMPSAT-1

  • Hwang, Jong-Sun;Kim, Sung-Yong;Lee, Seon-Ho;Min, Kyung-Duck;Kim, Jeong-Woo;Lee, Su-Jin
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1236-1238
    • /
    • 2003
  • The Earth's total magnetic field was extracted from on board TAM (Three Axis Magnetometer) observations of KOMPSAT-1 satellite between June 19th and 21st, 2000. In the pre-processing, the TAM's telemetry data were transformed from ECI (Earth Centered Inertial frame) to ECEF (Earth Centered Earth Fixed frame) and then to spherical coordination, and self-induced magnetic field by satellite bus itself were removed by using an on-orbit magnetometer data correction method. The 2-D wavenumber correlation filtering and quadrant-swapping method were applied to the pre-processed data in order to eliminate dynamic components and track-line noise, respectively. Then, the spherical harmonic coefficients are calculated from KOMPSAT-1 data. To test the validity of the TAM's geomagnetic field, Danish/NASA/French ${\phi}$rsted satellite's magnetic model and IGRF2000 model were used for statistical comparison. The correlation coefficient between ${\phi}$rsted and TAM is 0.97 and IGRF and TAM is 0.96. It was found that the data from on board magnetometer observations for attitude control of Earth-observing satellites can be used to determinate the Earth's total magnetic field and that they can be efficiently used to upgrade the global geomagnetic field coefficients, such as IGRF by providing new information at various altitudes with better temporal and spatial coverage.

  • PDF

Effects of Different Chair Heights on Ground Reaction Force and Trunk Flexion during Sit-to-Stand in the Elderly

  • Lee, Na-Kyung;Lee, Myoung-Hee
    • The Journal of Korean Physical Therapy
    • /
    • 제26권6호
    • /
    • pp.449-452
    • /
    • 2014
  • Purpose: The purpose of this study was to analyze the coordination between trunk flexion and lower limb extension contributing to vertical propulsion during sit-to-stand (STS) at different chair heights in the elderly. Methods: Ten elderly subjects were asked to stand up at their natural speed from different chair heights : (1) $90^{\circ}$ knee flexion; (2) $100^{\circ}$ knee flexion; (3) $110^{\circ}$ knee flexion; and (4) $120^{\circ}$ knee flexion. A standard chair without a backrest or armrests was used in this study. To remove inertial effects of upper limb movements, subjects were asked to stand up from a chair with their arms crossed at the chest. Mean of results of three trials were used in the analysis at different knee flexion angles. Distances moved by the shoulder for compensatory trunk movement was recorded by motion analysis and vertical force was recorded under foot using force plates. Distances moved by the shoulder and vertical ground reaction force measurements were analyzed using repeated ANOVA. Results: Distances moved by the shoulder significantly decreased with higher chair (p<0.05). Vertical forces were not significant difference on chair heights (p>0.05), but results of pairwise comparisons for vertical force revealed significant difference between $90^{\circ}$ knee flexion and $120^{\circ}$ knee flexion (p<0.05). Conclusion: Trunk movement is probably used as a compensatory mechanism at low chair heights to increase lift-off from sitting by the elderly.

다목적위성 삼축자력계로부터 관측된 지구자기장에 관한 연구 (Analysis of Geomagnetic Field measured from KOMPSAT-1 Three-Axis Magnetometer)

  • 김정우;황종선;김성용;이선호;민경덕;김형래
    • 자원환경지질
    • /
    • 제37권4호
    • /
    • pp.401-411
    • /
    • 2004
  • 다목적위성 아리랑 1호(KOMPSAT-1)에 장착된 본체 자세제어용 삼축자력계(TAM) 자료로부터 2000년 6월 19일에서 21일 사이의 지구자기장을 추출하였다 전처리과정으로 관측자료를 지구관성좌표계에서 지구고정좌표계로 변환시킨 후, 이를 다시 구면좌표계로 변환하였고, 지구자기장의 영향이 아닌 위성체 내의 전류에 의한 유도자기장은 자기장의 대칭성을 이용하여 제거하였다. 지구 외적 요인에 의한 자기장의 영향을 제거하기 위해 위성 궤도를 상향 및 하향 두 그룹으로 분류한 후, 2차원 파동수대비법을 이용해 두 그룹 사이에 서로 역으로 대비되는 성분을 제거하였다. 측선 잡음을 제거를 위하여 파동수영역에서 사분면교환법을 도입하였고, 이로부터 삼축자력계 관측값으로부터 최증적인 지구자기장을 추출하였다. TAM 자기장의 검증을 위해 다목적위성과 비슷한 시기에 유사한 고도에서 지구자기장을 전문적으로 측정한 ${\phi}$rsted로부터 유도된 지구자기장 및 IGRF2000모델과 비교한 결과 이들 사이의 상관계수는 각각 0.97과 0.96으로 매우 높게 나타났다. 끝으로 이 연구에서 추출한 지구자기장으로부터 구면조화계수를 degree & order 19까지 계산한 후 이를 IGRF ${\phi}$rsted와 Champ 모델과 비교하였다. 이 연구에 의해 일반적인 지구관측위성의 자세보정용 자력계로부터 degree & order 5까지 신뢰성있는 지구자기장의 추출이 가능함은 밝혀졌고, 이로부터 이 연구의 자료처리과정을 도입하면 지구자기장 전문관측위성이 존재하지 않는 기간은 물론 관측이 존재하지 않는 고도에 대한 지구자기장의 추출이 가능하게 되었고 이로부터 전지구 자기장 모델의 저주파 성분을 향상시킬 수 있음이 밝혀졌다.