• 제목/요약/키워드: inertial alignment system

검색결과 88건 처리시간 0.028초

좌표변환 기반의 두 자세 정렬 기법 비교 (Comparison between Two Coordinate Transformation-Based Orientation Alignment Methods)

  • 이정근;정우창
    • 센서학회지
    • /
    • 제28권1호
    • /
    • pp.30-35
    • /
    • 2019
  • Inertial measurement units (IMUs) are widely used for wearable motion-capturing systems in the fields of biomechanics and robotics. When the IMUs are combined with optical motion sensors (hereafter, OPTs) for their complementary capabilities, it is necessary to align the coordinate system orientations between the IMU and OPT. In this study, we compare the application of two coordinate transformation-based orientation alignment methods between two coordinate systems. The first method (M1) applies angular velocity coordinate transformation, while the other method (M2) applies gyroscopic angle coordinate transformation. In M1 and M2, the angular velocities and angles, respectively, are acquired during random movement for a least-square algorithm to determine the alignment matrix between the two coordinate systems. The performance of each method is evaluated under various conditions according to the type of motion during measurement, number of data points, amount of noise, and the alignment matrix. The results show that M1 is free from drift errors, while drift errors are present in most cases where M2 is applied. Thus, this study indicates that M1 has a far superior performance than M2 for the alignment of IMU and OPT coordinate systems for motion analysis.

레이저 관성항법장치에서 링레이저 자이로 디더 운동에 의한 가속도계 공진이 자체 정렬/항법 성능에 미치는 영향 분석 (Self-Alignment/Navigation Performance Analysis in the Accelerometer Resonance State Generated by Dither Motion of Ring Laser Gyroscope in Laser Inertial Navigation System)

  • 김천중;임경아;김선아
    • 한국군사과학기술학회지
    • /
    • 제24권6호
    • /
    • pp.577-590
    • /
    • 2021
  • In this paper, we theoretically analyzed the self-alignment/navigation performance in the accelerometer resonance state generated by dither motion of ring laser gyroscope in LINS and verified it through simulation. As a result of analysis, it is confirmed that the amplitude of the accelerometer measurement amplified in the accelerometer resonance state is decreased in the process of sampling per the navigation calculation period and that frequency is changed by the aliasing effect too. It was also analysed that the attitude error in self-alignment is determined by the amplitude/frequency of the accelerometer measurement, the gain of the self-alignment loop, and the velocity and position error in the navigation is determined by the amplitude/frequency/phase error of the accelerometer measurement. This analysis and simulation results show that the self-alignment and navigation performance is not be degraded only when the amplification factor of the accelerometer measurement in the accelerometer resonance state is 3 or less

속도 및 각정합과 각속도 및 가속도정합에 대한 전달정렬의 특성 분석 (Performance analysis of transfer alignment for velocity & angle matching and angular rate & acceleration matching)

  • 양철관;심덕선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1860-1863
    • /
    • 1997
  • Transfer alignement is the process of initializing attitude of slave INS using the data of master INS. This paper presents the performance analysis of transfer alignment at sea using convariance analysis method. Velocity & angle matching and angular rate & acceleration matching are used for analysis, and the performance of two matching methods are compared. We propose a new method for angular rate & acceleration matching. Under the assumption of accurate modeling of ship flexure, the performance of transfer alignment time and accuray is improved very much for the new method.

  • PDF

칼만 필터를 이용한 2축 회전형 관성항법장치의 초기위치 보정 정박 중 정렬 알고리즘 설계 (Design of an Initial-position Update Mooring Alignment Algorithm for Dual-axis Rotational INS Using a Kalman Filter)

  • 류경돈
    • 한국항행학회논문지
    • /
    • 제28권4호
    • /
    • pp.379-385
    • /
    • 2024
  • 관성항법장치는 정지 상태에서 가속도계 및 자이로 센서가 측정한 중력과 지구 자전 각속도 정보를 이용하여 정렬을 수행하며, 일반적으로 선형 항법 오차 모델 기반의 영속도 보정 칼만필터를 사용하여 수행된다. 하지만 이는 정지 상태를 가정하여 설계된 알고리즘으로 해상 정박 중 정렬을 수행하는 경우, 파도로 인해 발생하는 움직임으로 정렬 오차가 커지거나 필터가 발산하게 된다. 본 논문에서는 큰 방위각 오차 모델과 초기위치 보정 기법을 사용하여 해상 플랫폼을 위한 정박 중 정렬 알고리즘을 설계하고 시뮬레이션을 통해 검증하였다. 또한 이를 회전형 관성항법장치에 적용하였을 경우 바이어스가 상쇄되는 원리를 통해 비약적으로 성능이 개선됨을 확인하였다.

비선형 관측기를 이용한 스트랩다운 관성항법시스템 구성 (Design of a SDINS using the nonlinear observer)

  • 유명종;이장규;박찬국;심덕선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.27-27
    • /
    • 2000
  • The nonlinear observers are proposed for a nonlinear system. To improve the characteristics such as a stability, a convergence, and an H$\sub$$\infty$/ filter performance criterion, we utilize and H$\sub$$\infty$/ filter Riccati equation or a modified H$\sub$$\infty$/ filter Riccati equation with a freedom parameter. Using the Lyapunov, the characteristics of the observer are analyzed. Then the in-flight alignment for a strapdown inertial navigation system(SDINS) is designed using the observer proposed. Simulation results show that the observer with the modified H$\sub$$\infty$/ fitter Riccati equation effectively improve the performance of the in-flight alignment.

  • PDF

전달정렬의 측정치 시간지연 오차보상 기법 (Measurement Time-Delay Error Compensation for Transfer Alignment)

  • 임유철;송기원;유준
    • 제어로봇시스템학회논문지
    • /
    • 제7권11호
    • /
    • pp.953-957
    • /
    • 2001
  • This paper is concerned with a transfer alignment method for the SDINS under ship motions. Major error sources of transfer alignment are data transfer time-delay, lever-arm velocity and ship body flexure. Specifically, to reduce alignment errors induced by measurement time-delay effects, the error compensation method through delay state augmentation is suggested. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonliner measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then it is shown via observability analysis and computer simulations that the delay state can be estimated and compensated during ship motions resulting in considerably less alignment errors.

  • PDF

연속발사 충격에 강인한 SDINS 신속 초기정렬기법 설계 (Design of SDINS Rapid Initial Alignment Technique Robust to the Pyro-shock in Multi-Launch Rocket System)

  • 이형섭;한경준;이상우;유명종
    • 전기학회논문지
    • /
    • 제65권6호
    • /
    • pp.1038-1044
    • /
    • 2016
  • In this paper, a SDINS(Strapdown Inertial Navigation System) rapid initial alignment technique robust to the pyro-shock in multi-launch rocket system is proposed. The proposed method consists of three steps. Firth, transfer alignment is performed to estimate misalignment between MINS(Master INS) and SINS(Slave INS), and the estimated misalignment is written in the memory when transfer alignment is completed. Next, the pre-filtering process is performed to get rid of the acceleration error induced by launcher vibration. Finally, the horizontal alignment is performed to compensate misalignment variation caused by pyro-shock. We verified the performance of the proposed alignment method comparing with the conventional transfer alignment method. The simulation shows that the proposed initial alignment technique improves alignment performance.

스트랩다운 관성항법시스템의 주행 중 정렬을 위한 강인 관측기 구성 (Robust Observer Design for SDINS In-Flight Alignment)

  • 유명종;이장규;박찬국;심덕선
    • 제어로봇시스템학회논문지
    • /
    • 제7권8호
    • /
    • pp.703-710
    • /
    • 2001
  • The nonlinear observers are proposed for a nonlinear system. To improve the characteristics such as stability, convergence, and $H^{\infty}$ filter performance criterion, we utilize an $H^{\infty}$ filter Riccati equation or a modified $H^{\infty}$ filter Riccati equation with a freedom parameter. Using the Lyapunov function method, the characteristics of the observers are analyzed. Then the in-flight alignment for a strapdown inertial navigation system(SDINS) is designed using the proposed observer. And the additive quaternion error model is especially used to reduce the uncertainty of the SDINS error model. Simulation results show that the observer with the modified $H^{\infty}$ filter Riccati equation effectively improves the performance of the in-flight alignment.

  • PDF

SDINS의 좌표축 초기 배열에 관한 칼만 필터링 기법의 응용 (Application of Kalman filtering technique to initial axes alignment of SDINS)

  • 최근국;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.290-294
    • /
    • 1986
  • Initial alignment of gimballed INS is accomplished by the gyrocompassing techniques. These cannot be used in the case of strapdown system where the inertial instruments are directly strapped down to a vehicle frame. The basic objective of this paper is the development of digital methods performing the initial alignment of a SDINS from vibration and sway currupted data on the launch pad.

  • PDF

Measurement Time-Delay Error Compensation For Transfer Alignment

  • Lim, You-Chol;Song, Ki-Won;Joon Lyou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.486-486
    • /
    • 2000
  • This paper is concerned with a transfer alignment method for the SDINS(StrapDown Inertial Navigation System) under ship motions. Major error sources of transfer alignment are data transfer time-delay, lever-arm velocity and ship body flexure. Specifically, to reduce alignment errors induced by measurement time-delay effects, the error compensation method through delay state augmentation is suggested. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonlinear measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then it is shown via observability analysis and computer simulations that the delay state can be estimated and compensated during ship motions resulting in considerably less alignment errors.

  • PDF