• Title/Summary/Keyword: inertia ratio

Search Result 262, Processing Time 0.026 seconds

Flapwise Bending Vibration of Rotating Timpshenko Beams with Concentrated Mass and Mass Moment of Inertia (집중 질량및 관성 모멘트를 갖는 회전하는 티모센코 보의 면외굽힘 진동)

  • 박정훈;유홍희
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.353-360
    • /
    • 1998
  • In this paper, a modeling method for the bending vibration analysis of rotating Timoshenko beams with concentrated mass and mass moment of inertia is presented. The shear and rotary inertia effects become critical for the accurate estimation of the natural frequencies and mode shapes as the slenderness ratio decreases. The natural frequencies obtained by using the Timoshenko beam theory are lower than those by using the Euler beam theory. The critical angular speed, which does not exist only with the concentrated mass, exists with the concentrated mass moment of inertia.

  • PDF

Free Vibrations of Horizontally Curved Beams with Rotatory Inertia and Shear Deformation (회전관성과 전단변형을 고려한 수평 곡선보의 자유진동)

  • 이병구;모정만;이태은;안대순
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.1
    • /
    • pp.63-69
    • /
    • 2003
  • The ordinary differential equations governing free vibrations of elastic horizontally curved beams are derived, in which the effects of rotatory inertia and shear deformation as well as the effects of both vertical and torsional inertias are included. Frequencies and mode shapes are computed numerically for parabolic curved beams with the hinged-hinged, hinged-clamped and clamped-clamped ends. Comparisons of natural frequencies between this study and ADINA are made to validate the theories and numerical methods developed herein. The lowest three natural frequency parameters are reported. with and without the effects of rotatory inertia and shear deformation. as functions of the three non-dimensional system parameters: the horizontal rise to span length ratio. the slenderness ratio and the stiffness parameter.

Flapwise Bending Vibration of Rotating Timoshenko Beams with Concentrated Mass Moment of Inertia (집중 질량 및 관성모멘트를 갖는 회전하는 티모센코 보의 면외굽힘 진동)

  • 박정훈;유홍희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.110-115
    • /
    • 1997
  • A modeling method for the bending vibration analysis of rotating Timoshenko beams with concentrated mass and mass moment of inertia is presented. The shear and rotary inertia effects become critical for the accurate estimation of the natural frequencies and modeshapes as the slenderness ratio decreases. The effect of the concentrated mass and mass moment of inertia on the natural frequencies are also investigated with the modeling method.

  • PDF

An Experimental Study on the Flexural Rigidity of Reinforced High Strength Concrete Beams (고강도철근콘크리트 보의 휨강성에 관한 실험적 연구)

  • 고만영;김상우;김용부
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.71-78
    • /
    • 2000
  • This paper presents a study on the flexural rigidity of reinforced high strength concrete beams. Thirty six beams with different compressive strength of concrete, tensile reinforcement ratio, compressive reinforcement ratio, and pattern of loadings(1 point loading and 2 points loading) were tested to evaluate the effective moment of inertia. According to the experimental results, the eqation(1) proposed by ACI code for the effective moment of inertia overestimated that of simply supported reinforced high strength concrete beams. Thus, in this paper, an empirical equation(3) is proposed as a lower bound of 90% confidence limit to estimate the effective moment of inertia of simply supported reinforced high strength concrete beams.

Flexural behavior of concrete beams reinforced with aramid fiber reinforced polymer (AFRP) bars

  • Kim, Min Sook;Lee, Young Hak;Kim, Heecheul;Scanlon, Andrew;Lee, Junbok
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.459-477
    • /
    • 2011
  • Due to the low elastic modulus of FRP, concrete members reinforced with FRP rebars show greater deflections than members reinforced with steel rebars. Deflection is one of the important factors to consider the serviceability of horizontal members. In this study flexural test of AFRP reinforced concrete beams was performed considering reinforcement ratio and compressive strength as parameters. The test results indicated that flexural capacity and stiffness increase in proportion to the reinforcement ratio. The test results were compared with existing proposed equations for the effective moment of inertia including ACI 440. The most of the proposed equations were found to over-estimate the effective moment of inertia while the equation proposed by Bischoff and Scanlon (2007) most accurately predicted the values obtained through actual testing.

Modeling and Vibration Analysis of Rotating Cantilever Deams Considering Shear and Rotary Inertia Effects (전단 및 단면 관성효과를 고려한 회전 외팔보의 모델링 및 진동해석)

  • 신상하;유홍희
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.179-185
    • /
    • 1996
  • This paper presents a modeling method for the vibration analysis of a rotating beam the slenderness ratio of which is relatively small. The smaller the slenderness ratio becomes, the larger the shear and rotary inertia effects become. Such effects become critical for the accurate estimation of the natural frequencies and modeshapes, especially higher frequencies and modes, as the angular speed increases. It is also shown that the effects are important for the accurate estimation of the critical angular speed of the beam.

  • PDF

In-plane free vibrations of catenary arches with unsymmetric axes

  • Wilson, James F.;Lee, Byoung Koo
    • Structural Engineering and Mechanics
    • /
    • v.3 no.5
    • /
    • pp.511-525
    • /
    • 1995
  • The differential equations governing in-plane free vibrations of the elastic, catenary arch with rotatory inertia are derived in Cartesian coordinates. Frequencies and mode shapes are computed numerically for such arches with unsymmetric axes, for both clamped-clamped and hinged-hinged end constraints. The lowest four natural frequency parameters are reported, with and without rotatory inertia, as a function of three nondimensional system parameters; the span to cord length ratio e, the slenderness ratio s, and the rise to cord length ratio f. Experimental measures of frequencies and mode shapes for several laboratory-scale catenary models serve to validate the theoretical results.

Free Vibration Analysis of Horizontally Sinusoidal Curved Beams in Cartesian Coordinates (직교 좌표계에 의한 정현형 수평 곡선보의 자유진동 해석)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Kang, Hee-Jong;Kim, Kweon-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.11-16
    • /
    • 2002
  • The differential equations governing free vibrations of the elastic, horizontally curved beams with unsymmetric axis are derived in Cartesian coordinates rather than in polar coordinates, in which the effect of torsional inertia is included. Frequencies are computed numerically for the sinusoidal curved beams with both clamped ends and both hinged ends. Comparisons of natural frequencies between this study and SAP 2000 are made to validate theories and numerical methods developed herein. The convergent efficiency is highly improved under the newly derived differential equations in Cartesian coordinates. The lowest four natural frequency parameters are reported, with and without torsional inertia, as functions of three non-dimensional system parameters: the horizontal rise to chord length ratio, the span length to chord length ratio, and the slenderness ratio.

  • PDF

Investigation on the Effective Moment of Inertia of Reinforced Concrete Flexural Members Under Service Load (사용하중 상태에서 철근콘크리트 휨부재의 유효 단면2차모멘트에 대한 고찰)

  • Lee, Seung-Bea;Park, Mi-Young;Jang, Su-Youn;Kim, Kang-Su;Kim, Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.393-404
    • /
    • 2008
  • The approaches in many design codes for the estimation of the deflection of flexural reinforced concrete (RC) members utilize the concept of the effective moment of inertia which considers the reduction of flexural rigidity of RC beams after cracking. However, the effective moment of inertia in design codes are primarily based on the ratio of maximum moment and cracking moment of beam subjected to loading without proper consideration on many other possible influencing factors such as span length, member end condition, sectional size, loading geometry, materials, sectional properties, amount of cracks and its distribution, and etc. In this study, therefore, an experimental investigation was conducted to provide fundamental test data on the effective moment of inertia of RC beams for the evaluation of flexural deflection, and to develop a modified method on the estimation of the effective moment of inertia based on test results. 14 specimens were fabricated with the primary test parameters of concrete strength, cover thickness, reinforcement ratio, and bar diameters, and the effective moments of inertia obtained from the test results were compared with those by design codes, existing equations, and the modified equation proposed in this study. The proposed method considered the effect of the length of cracking region, reinforcement ratio, and the effective concrete area per bar on the effective moment of inertia, which estimated the effective moment of inertia more close to the test results compared to other approaches.

The Study on the Added Moment of Inertia of Two Dimensional Cylinder induced by the Torsional Vibration coupled with the Flexural Vibration (자유수면(自由水面)에서의 비틀림 수평(水平)굽힘의 연성진동(連成振動)을 하는 선체단면형(船體斷面形)의 이차원적(二次元的) 부가관성(附加慣性) Moment에 관(關)한 연구(硏究))

  • S.S.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.7 no.2
    • /
    • pp.3-18
    • /
    • 1970
  • An investigation was made for the added mass moment of inertia induced by the rotational motion of the cylinder with hull section on water in order to obtain the information to estimate the natural frequency of the torsional vibration of ships. The special consideration to the effect of the draught upon the added mass moment of inertia is taken into account in the study. In this paper, the general expression for the added mass coefficients of moment of inertia of arbitary two dimensional forms induced by the torsional vibration, was derived by the author. Hence, the coefficients for these forms are represented as functions of parameters, the section area coefficient and draft beam ratio, from which the added mass coefficients for arbitrary forms can be obtained. The result was shown in a chart for estimation of the added mass moment of inertia induced by the torsional vibration, as first trial, for the convenience of practical use.

  • PDF