• Title/Summary/Keyword: inertia identification

Search Result 54, Processing Time 0.02 seconds

Study on the Identification of Ship Maneuverability Required for Navigational Officers based on AHP Analysis (AHP 분석 기반 항해사 필요 선박조종성능 식별 연구)

  • Kang, Suk-Young;Ahn, Young-Joong;Yu, Yong-Ung;Lee, Yun-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.800-808
    • /
    • 2022
  • The International Maritime Organization adopted the interim standards for ship maneuverability in November 1993 for preventing collision of ships at sea and for protecting the marine environment, and based on the accumulated data, in December 2002, the established standards for ship maneuverability were adopted. However, the standards adopted are those at full load, even keel, and at least 90 % of the ship speed at 85 % of the ship's maximum power. Moreover, these standards have limitations in providing information on maneuverability under actual navigational conditions. Therefore, in this study, frequency analysis AHP analysis techniques were studied by consulting navigational officers, captains, and experts, who have significant knowledge on ship maneuverability, utilization of the current standards, and the information necessary for the operation of the actual ship. The results of this study confirmed that the necessary information on maneuverability for the navigational officer operating the vessel is information about the turning circle at a small angle of 5°-10° and z-test information at maneuvering speed, not sea speed. Additionally, in relation to speed control, additional information on deceleration inertia and acceleration inertia is needed than the information on the stopping ability at sea speed and full loaded condition. The derived results are considered to be useful as basic data for preparing guidelines for ship maneuverability necessary for navigational of icers who operate ships.

Identification of Dynamic Stiffness of Squeeze Film Damper using Active Magnetic Bearing System as an Exciter (자기베어링 시스템을 가진기로 이용한 스퀴즈 필름 댐퍼의 동강성 계수 규명)

  • Kim, Keun-Joo;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.381-387
    • /
    • 2002
  • In this work, the dynamic characteristics of an oil-lubricated, short SFD with a central feeding groove are derived based on a theoretical analysis considering the effect of a groove. The validity of the analysis is investigated experimentally using an Active Magnetic Bearing (AMB) system as an exciter. For the theoretical solution, the fluid film forces of a grooved SFD are analytically derived so that the dynamic coefficients of a SFD are expressed in terms of its design parameters. For the experimental validation of the analysis, a test rig using AMB as an exciter is proposed to identify the dynamic characteristics of a short SFD with a central groove. As an exciter, the AMB represents a mechatronic device to levitate and position the test journal without any mechanical contact, to generate relative motions of the journal inside the tested SFD and to measure the generated displacements during experiments with fairly high accuracy. Using this test rig, experiments are extensively conducted with different clearance, which is one of the most important design parameters, in order to investigate its effect on the dynamic characteristics and the performance of SFDs. Damping and inertia coefficients of the SFD that are experimentally identified are compared with the analytical results to demonstrate the effectiveness of the analysis. It is also shown that AMB is an ideal device for tests of SFDs.

  • PDF

Identification of the quantitative trait loci for breaking and bending types lodging resistance in rice, using recombinant inbred lines derived from Koshihikari and a strong culm variety, leaf star

  • Samadi, Ahmad Fahim;Yamamoto, Toshio;Ueda, Tadamasa;Adachi, Shunsuke;Hirasawa, Tadashi;Ookawa, Taiichiro
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.93-93
    • /
    • 2017
  • To develop rice cultivars with increased biomass and grain yield, superior lodging resistance is an essential trait. The new breeding approach can be adopted for the improvement of stem lodging resistance by enhancing culm strength. The resistance to breaking type lodging is attributed to bending moment of basal culm (M), which is composed of the section modulus (SM) and bending stress (BS). The resistance to the bending type lodging is attributed to flexural rigidity (FR) of stem, which is composed of the secondary moment of inertia (SMI) and Young's modulus (YM). Starch and cell wall components such as cellulose, hemicellulose and lignin also play a significant role in physical strength of culm, and thus affect lodging. Leaf Star has a superior lodging resistance due to its thick and stiff culm because of its high M and FR compared with Koshihikari. Furthermore, Leaf Star contains high densities of hemicellulose, cellulose and low lignin density in culm compared with Koshihikari. In this study, we performed QTL analysis for these traits associated with culm strength, using 94 recombinant inbred lines (RILs, $F_8$), derived from a cross between Leaf Star and Koshihikari. The SM in the RILs showed a continuous distribution. QTLs for SM were detected on chrs.2, 3 and 10. Leaf Star alleles increased SM on chrs. 2 and 3, but Koshihikari allele increased on chr.10. These QTLs overlapped with those QTLs identified using backcrossed inbred line derived from a cross between Chugoku 117 and Koshihikari, the parents of Leaf Star. The FR in Leaf Star was higher than that in Koshihikari due to the larger SMI and YM. 3 QTLs for SMI were detected on chrs.2, 3 and 10. Leaf Star alleles increased SMI on chrs.2 and 3, and Koshihikari alleles increased on chr.10. One QTL on chr.3 and two QTLs on chr.5 for hollocelulose content were detected with Leaf Star alleles contribution. Moreover, two QTLs were detected for hemicellulose density on chrs.3 and 5. Leaf Star allele increased hemicellulose density on chr.5, and Koshihikari allele increased on chr.3. Furthermore, two QTLs for cellulose density were detected on chr.5, and one QTL on chr.2. For starch content, one QTL on chr.3 and two QTLs on chr.5 with Leaf Star alleles contribution were detected. TULK-6 carrying a chromosome segment of Leaf Star on chr.5 in the Koshihikari genetic background showed higher densities of starch and hemicellulose than those in Koshihikari. These results suggest that the detected QTLs for culm strength could be utilized for the improvement of lodging resistance in rice by marker-assisted selection.

  • PDF

Dynamics of Technology Adoption in Markets Exhibiting Network Effects

  • Hur, Won-Chang
    • Asia pacific journal of information systems
    • /
    • v.20 no.1
    • /
    • pp.127-140
    • /
    • 2010
  • The benefit that a consumer derives from the use of a good often depends on the number of other consumers purchasing the same goods or other compatible items. This property, which is known as network externality, is significant in many IT related industries. Over the past few decades, network externalities have been recognized in the context of physical networks such as the telephone and railroad industries. Today, as many products are provided as a form of system that consists of compatible components, the appreciation of network externality is becoming increasingly important. Network externalities have been extensively studied among economists who have been seeking to explain new phenomena resulting from rapid advancements in ICT (Information and Communication Technology). As a result of these efforts, a new body of theories for 'New Economy' has been proposed. The theoretical bottom-line argument of such theories is that technologies subject to network effects exhibit multiple equilibriums and will finally lock into a monopoly with one standard cornering the entire market. They emphasize that such "tippiness" is a typical characteristic in such networked markets, describing that multiple incompatible technologies rarely coexist and that the switch to a single, leading standard occurs suddenly. Moreover, it is argued that this standardization process is path dependent, and the ultimate outcome is unpredictable. With incomplete information about other actors' preferences, there can be excess inertia, as consumers only moderately favor the change, and hence are themselves insufficiently motivated to start the bandwagon rolling, but would get on it once it did start to roll. This startup problem can prevent the adoption of any standard at all, even if it is preferred by everyone. Conversely, excess momentum is another possible outcome, for example, if a sponsoring firm uses low prices during early periods of diffusion. The aim of this paper is to analyze the dynamics of the adoption process in markets exhibiting network effects by focusing on two factors; switching and agent heterogeneity. Switching is an important factor that should be considered in analyzing the adoption process. An agent's switching invokes switching by other adopters, which brings about a positive feedback process that can significantly complicate the adoption process. Agent heterogeneity also plays a important role in shaping the early development of the adoption process, which has a significant impact on the later development of the process. The effects of these two factors are analyzed by developing an agent-based simulation model. ABM is a computer-based simulation methodology that can offer many advantages over traditional analytical approaches. The model is designed such that agents have diverse preferences regarding technology and are allowed to switch their previous choice. The simulation results showed that the adoption processes in a market exhibiting networks effects are significantly affected by the distribution of agents and the occurrence of switching. In particular, it is found that both weak heterogeneity and strong network effects cause agents to start to switch early and this plays a role of expediting the emergence of 'lock-in.' When network effects are strong, agents are easily affected by changes in early market shares. This causes agents to switch earlier and in turn speeds up the market's tipping. The same effect is found in the case of highly homogeneous agents. When agents are highly homogeneous, the market starts to tip toward one technology rapidly, and its choice is not always consistent with the populations' initial inclination. Increased volatility and faster lock-in increase the possibility that the market will reach an unexpected outcome. The primary contribution of this study is the elucidation of the role of parameters characterizing the market in the development of the lock-in process, and identification of conditions where such unexpected outcomes happen.