• 제목/요약/키워드: inequality controlling & nonlinear stability analysis

검색결과 2건 처리시간 0.015초

Aviation stability analysis with coupled system criterion of theoretical solutions

  • C.C. Hung;T. Nguyen
    • Coupled systems mechanics
    • /
    • 제12권3호
    • /
    • pp.221-239
    • /
    • 2023
  • In our research, we have proposed a solid solution for aviation analysis which can ensure the asymptotic stability of coupled nonlinear plants, according to the theoretical solutions and demonstrated method. Because this solution employed the scheme of specific novel theorem of control, the controllers are artificially combined by the parallel distribution computation to have a feasible solution given the random coupled systems with aviation stability analysis. Therefore, we empathize and manually derive the results which shows the utilized lemma and criterion are believed effective and efficient for aircraft structural analysis of composite and nonlinear scenarios. To be fair, the experiment by numerical computation and calculations were explained the perfectness of the methodology we provided in the research.

The nonlinear fuzzy intelligent theory for high-bypass-ratio two-spool unmixed-flow jet engines

  • C.C. Hung;T. Nguyen
    • Advances in aircraft and spacecraft science
    • /
    • 제10권4호
    • /
    • pp.369-391
    • /
    • 2023
  • In our research we have offered a solid solution for aeronautical analysis. which can guarantee the asymptotic stability of coupled nonlinear facilities. According to the theoretical solutions and methods presented, the engine of this aircraft is a small high-bypass turbofan engine. using the non-linear aero-motor control approach and this paper focuses on the power management function of the aero-motor control system. These include static controls and transient controls. A mathematical model of the high-bypass-ratio two-spool unmixed-flow aeroengine was developed through a set of nonlinear dynamic equations verified by experimental data. A single actuator using the displacement method is designed to maintain a certain level of thrust under steady-state conditions. and maintains repeatable performance during transient operation from the requested thrust phase to the next. A single controller can compensate for the effects of noise and harmonic noise at many performance points. And the dynamic performance of a single controller is satisfactory during the transient. for fairness Numerical and computer experiments are described in the perfection of the methods we offer in research.