• Title/Summary/Keyword: inelastic deformations

Search Result 95, Processing Time 0.025 seconds

Inelastic response of multistory buildings under earthquake excitation

  • Thambiratnam, D.P.;Corderoy, H.J.B.;Gao, H.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.1
    • /
    • pp.81-94
    • /
    • 1994
  • It is well recognized that structures designed to resist strong ground motions should be able to withstand substantial inelastic deformations. A simple procedure has been developed in this paper to monitor the dynamic earthquake response (time-history analysis) of both steel and concrete multistorey buildings in the inelastic range. The building is treated as a shear beam model with three degrees of freedom per floor. The entire analysis has been programmed to run on a microcomputer and can output time histories of displacements, velocities, accelerations and member internal forces at any desired location. A record of plastic hinge formation and restoration to elastic state is also provided. Such information can be used in aseismic analysis and design of multistorey buildings so as to control the damage and optimize their performance.

Investigating the effect of bond slip on the seismic response of RC structures

  • Fallah, Mohammad Mehdi;Shooshtari, Ahmad;Ronagh, Hamid Reza
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.695-711
    • /
    • 2013
  • It is reasonable to assume that reinforced concrete (RC) structures enter the nonlinear range of response during a severe ground motion. Numerical analysis to predict the behaviour therefore must allow for the presence of nonlinear deformations if an accurate estimate of seismic response is aimed. Among the factors contributing to inelastic deformations, the influence of the degradation of the bond slip phenomenon is important. Any rebar slip generates an additional rotation at the end regions of structural members which are not accounted for in a conventional analysis. Although these deformations could affect the seismic response of RC structures considerably, they are often neglected due to the unavailability of suitable models. In this paper, the seismic response of two types of RC structures, designed according to the Iranian concrete code (ABA) and the Iranian seismic code (2800), are evaluated using nonlinear dynamic and static analyses. The investigation is performed using nonlinear dynamic and static pushover analysis considering the deformations due to anchorage slip. The nonlinear analysis results confirm that bond slip significantly influences the seismic behavior of RC structure leading to an increase of lateral deformations by up to 30% depending on the height of building. The outcomes also identify important parameters affecting the extent of this influence.

Seismic performance of concrete frames reinforced with superelastic shape memory alloys

  • Youssef, M.A.;Elfeki, M.A.
    • Smart Structures and Systems
    • /
    • v.9 no.4
    • /
    • pp.313-333
    • /
    • 2012
  • Reinforced concrete (RC) framed buildings dissipate the seismic energy through yielding of the reinforcing bars. This yielding jeopardizes the serviceability of these buildings as it results in residual lateral deformations. Superelastic Shape Memory Alloys (SMAs) can recover inelastic strains by stress removal. Since SMA is a costly material, this paper defines the required locations of SMA bars in a typical RC frame to optimize its seismic performance in terms of damage scheme and seismic residual deformations. The intensities of five earthquakes causing failure to a typical RC six-storey building are defined and used to evaluate seven SMA design alternatives.

Finite element analysis of inelastic thermal stress and damage estimation of Y-structure in liquid metal fast breeder reactor (액체금속로 Y-구조물의 비탄성 열응력 해석 및 손상평가에 관한 유한요소해석)

  • Kwak, D.Y.;Im, Y.T.;Kim, J.B.;Lee, H.Y.;Yoo, B.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1042-1049
    • /
    • 1997
  • LMFBR(Liquid Metal Fast Breeder Reactor) vessel is operated under the high temperatures of 500-550.deg. C. Thus, transient thermal loads were severe enough to cause inelastic deformation due to creep-fatigue and plasticity. For reduction of such inelastic deformations, Y-piece structure in the form of a thermal sleeve is used in LMFBR vessel under repeated start-up, service and shut-down conditions. Therefore, a systematic method for inelastic analysis is needed for design of the Y-piece structure subjected to such loading conditions. In the present investigation, finite element analysis of heat transfer and inelastic thermal stress were carried out for the Y-piece structure in LMFBR vessel under service conditions. For such analysis, ABAQUS program was employed based on the elasto-plastic and Chaboche viscoplastic constitutive equations. Based on numerical data obtained from the analysis, creep-fatigue damage estimation according to ASME Code Case N-47 was made and compared to each other. Finally, it was found out that the numerical predictio of damage level due to creep based on Chaboche unified viscoplastic constitutive equation was relatively better compared to elasto-plastic constitutive formulation.

Application of Direct Inelastic Design for Steel Structures (철골조를 위한 직접비탄성설계법의 적용)

  • Eom, Tae Sung;Park, Hong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.103-113
    • /
    • 2005
  • In the present study, the Direct Inelastic Design (DID) for steel structures developed in the previous study was improved to expand it applicability. The proposed design method can perform inelastic designs that address the design characteristics of steel structures: Group member design, discrete member sizes, variation of moment-carrying capacity according to axial force, connection types, and multiple design criteria and load conditions. The design procedure for the proposed method was established, and a computer program incorporating the design procedure was developed. The design results from the conventional elastic method and the DID were compared and verified by the existing computer program for nonlinear analysis. Compared with the conventional elastic design, the DID addressing the inelastic behavior reduced the total weight of steel members and enhanced the deformability of the structure. The proposed design method is convenient because it can directly perform inelastic design by using linear analysis for secant stiffness. Also, it can achieve structural safety and economical design by controlling deformations of the plastic hinges.

Simplified procedure for seismic demands assessment of structures

  • Chikh, Benazouz;Mehani, Youcef;Leblouba, Moussa
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.455-473
    • /
    • 2016
  • Methods for the seismic demands evaluation of structures require iterative procedures. Many studies dealt with the development of different inelastic spectra with the aim to simplify the evaluation of inelastic deformations and performance of structures. Recently, the concept of inelastic spectra has been adopted in the global scheme of the Performance-Based Seismic Design (PBSD) through Capacity-Spectrum Method (CSM). For instance, the Modal Pushover Analysis (MPA) has been proved to provide accurate results for inelastic buildings to a similar degree of accuracy than the Response Spectrum Analysis (RSA) in estimating peak response for elastic buildings. In this paper, a simplified nonlinear procedure for evaluation of the seismic demand of structures is proposed with its applicability to multi-degree-of-freedom (MDOF) systems. The basic concept is to write the equation of motion of (MDOF) system into series of normal modes based on an inelastic modal decomposition in terms of ductility factor. The accuracy of the proposed procedure is verified against the Nonlinear Time History Analysis (NL-THA) results and Uncoupled Modal Response History Analysis (UMRHA) of a 9-story steel building subjected to El-Centro 1940 (N/S) as a first application. The comparison shows that the new theoretical approach is capable to provide accurate peak response with those obtained when using the NL-THA analysis. After that, a simplified nonlinear spectral analysis is proposed and illustrated by examples in order to describe inelastic response spectra and to relate it to the capacity curve (Pushover curve) by a new parameter of control, called normalized yield strength coefficient (${\eta}$). In the second application, the proposed procedure is verified against the NL-THA analysis results of two buildings for 80 selected real ground motions.

Evaluation of Member Plastic Deformation Demands for Dual Systems with Special Moment Frames (특수모멘트골조를 가진 이중골조시스템을 위한 부재소성변형 평가)

  • Eom, Tae-Sung;Kim, Jae-Yo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.41-51
    • /
    • 2010
  • For safe seismic evaluation and design, it is necessary to predict the plastic deformation demands of members. In the present study, a quick and reasonable method for the evaluation of member plastic deformations of dual systems was developed on the basis of results of elastic analysis, without using nonlinear analysis. Plastic deformations of beams, columns, and walls are functions of member stiffness, story drift ratio, and moment redistribution determined from elastic analysis. For dual systems with rigid connections between walls and beams, an increase in the plastic deformations of beams due to the rocking effect was considered. The proposed method was applied to 8-story dual systems and the predicted plastic deformations were compared with the results of nonlinear analysis. The results showed that the proposed method accurately predicted the member plastic deformations with simple calculations, but that for the accurate evaluation of member plastic deformations, the inelastic story drift ratio must also be predicted with accuracy. The proposed method can be applied to both the performance-based seismic design of new structures and the seismic evaluation of existing structures.

Correlation of the Experimental and Analytical Inelastic Response of a 1/12-Scale 10-Story Reinforced Concrete Frame with Nonseismic Detail (비내진 상세를 가지 10층 R.C. 골조의 비선형 거동에 대한 실험과 해석의 상관성 연구)

  • 이한선;강귀용;김정우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.535-540
    • /
    • 1998
  • Nowadays, the pushover analysis technique is becoming a very useful tool for the prediction of inelastic behavior of structures in the seismic evaluation of existing buildings in the worldwide. However, the reliability of this analysis method has not been fully checked by the test results. The objective of this study is to verify the correlation between the experimental and analytical response of a high-rise nonseismic reinforced concrete frame using DRAIN-2DX program and the test results performed previously. This study concludes that the overall responses such as story-shear versus story-drift can be predicted with quite high reliability while the local deformations such as plastic rotations in the ends of critical members can not be described reasonably.

  • PDF

A trilinear stress-strain model for confined concrete

  • Ilki, Alper;Kumbasar, Nahit;Ozdemir, Pinar;Fukuta, Toshibumi
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.541-563
    • /
    • 2004
  • For reaching large inelastic deformations without a substantial loss in strength, the potential plastic hinge regions of the reinforced concrete structural members should be confined by adequate transverse reinforcement. Therefore, simple and realistic representation of confined concrete behaviour is needed for inelastic analysis of reinforced concrete structures. In this study, a trilinear stress-strain model is proposed for the axial behaviour of confined concrete. The model is based on experimental work that was carried out on nearly full size specimens. During the interpretation of experimental data, the buckling and strain hardening of the longitudinal reinforcement are also taken into account. The proposed model is used for predicting the stress-strain relationships of confined concrete specimens tested by other researchers. Although the proposed model is simpler than most of the available models, the comparisons between the predicted results and experimental data indicate that it can represent the stress-strain relationship of confined concrete quite realistically.

Propositions of the Ductility Reduction Factor for Estimating Inelastic Displacement Responses of Bridge Structures (교량구조물의 비탄성변위응답 평가를 위한 연성도감소계수 산정식 제안)

  • Song, Jong-Keol;Kim, Hak-Soo
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.153-161
    • /
    • 2006
  • The main objective of this study was to derive a formula of ductility reduction factor, expressed as $R_{\mu}$. To attain this objective, a study comprised reduction factors computed for stiffness degrading systems undergoing different levels of ductility and to investigate an accuracy of the formula. Based on this study, the main conclusions can be summarized :(1) The ductility reduction factor is primarily affected by the period of the system and the displacement ductility ratio. (2) The proposed formula is simpler and the inelastic deformations of bridge structures are better than those by the others formulas we used before.

  • PDF