• Title/Summary/Keyword: industrial Saccharomyces cerevisiae

Search Result 96, Processing Time 0.028 seconds

Alcohol Fermentation at High Temperature and the Strain-specific Characteristics Required to Endow the Thermotolerance of Sacchromyces cerevisiae KNU5377

  • Paik, Sang-Kyoo;Park, In-Su;Kim, Il-Sup;Kang, Kyung-Hee;Yu, Choon-Bal;Rhee, In-Koo;Jin, In-Gnyol
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2005.06a
    • /
    • pp.154-164
    • /
    • 2005
  • Saccharomyces cerevisiae KNU5377 is a thermotolerant strain, which can ferment ethanol from wasted papers and starch at 40$^{\circ}C$ with the almost same rate as at 30$^{\circ}C$. This strain showed alcohol fermentation ability to convert wasted papers 200 g (w/v) to ethanol 8.4% (v/v) at 40$^{\circ}C$, meaning that 8.4% ethanol is acceptable enough to ferment in the industrial economy. As well, all kinds of starch that are using in the industry were converted into ethanol at 40$^{\circ}C$ with the almost same rate as at 30$^{\circ}C$. Hyperthermic cell killing kinetics and differential scanning calorimetry (DSC) revealed that exponentially growing cells of this yeast strain KNU5377 were more thermotolerant than those of S. cerevisiae ATCC24858 used as a control. This intrinsic thermotolernace did not result from the stability of entire cellular components but possibly from that of a particular target. Heat shock induced similar results in whole cell DSC profiles of both strains and the accumulation of trehalose in the cells of both strains, but the trehalose contents in the strain KNU5377 were 2.6 fold higher than that in the control strain. On the contrary to the trehalose level, the neutral trehalase activity in the KNU5377 cells was not changed after the heat shock. This result made a conclusion that though the trehalose may stabilize cellular components, the surplus of trehalose in KNU5377 strain was not essential for stabilization of whole cellular components. A constitutively thermotolerant yeast, S. cerevisiae KNU5377, was compared with a relatively thermosensitive control, S. cerevisiae ATCC24858, by assaying the fluidity and proton ATPase on the plasma membrane. Anisotropic values (r) of both strains were slightly increased by elevating the incubation temperatures from 25$^{\circ}C$ to 37$^{\circ}C$ when they were aerobically cultured for 12 hours in the YPD media, implying the membrane fluidity was decreased. While the temperature was elevated up to 40$^{\circ}C$, the fluidity was not changed in the KNU5377 cell, but rather increased in the control. This result implies that the plasma membrane of the KNU5377 cell can be characterized into the more stabilized state than control. Besides, heat shock decreased the fluidity in the control strain, but not in the KNU5377 strain. This means also there's a stabilization of the plasma membrane in the KNU5377 cell. Furthermore, the proton ATPase assay indicated the KNU5377 cell kept a relatively more stabilized glucose metabolism at high temperature than the control cell. Therefore, the results were concluded that the stabilization of plasma membrane and growth at high temperature for the KNU5377 cell. Genome wide transcription analysis showed that the heat shock responses were very complex and combinatory in the KNU5377 cell. Induced by the heat shock, a number of genes were related with the ubiquitin mediated proteolysis, metallothionein (prevent ROS production from copper), hsp27 (88-fold induced remarkably, preventing the protein aggregation and denaturation), oxidative stress response (to remove the hydrogen peroxide), and etc.

  • PDF

Analysis of Optimum Condition for Production of an Onionic Vinegar by Two-Step Fermentations (2단계 발효에 의한 양파식초 제조의 최적 조건 검토)

  • Kim, Sam-Woong;Park, Jai-Hyo;Jun, Hong-Ki
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1410-1414
    • /
    • 2008
  • This study was carried out to develop a vinegar by an onion juice. Onions are considered to be a promising source of the vinegar because these are rich in sugars, amino acids and various nutrients. An Acetobacter for an acetic acid fermentation was isolated and used from vinegars produced by industrial goods or from matured Kimchi. When supplemented with 2-8% ethanol into an onionic juice medium, the highest production of the acetic acid was observed at 9 days by addition of 4% ethanol. Optimum temperature and aeration for acetic acid production were exhibited at $30^{\circ}C$ and 200 rpm, respectively. A flask containing larger air-contact surface region for fermentation was produced the more acetic acid than that of a test tube. Taken all these together, an optimum condition for the acetic acid fermentation was over 9 days at $30^{\circ}C$, 200 rpm with 5% alcohol and 2% initial acidity. When fermented by the upper condition, the final product contains 5.2% total acidity and less than 1% ethanol. These are suitable for conditions of fruit vinegar notified by the Ministry of Commerce, Industry and Energy.

Inhibition of Metarhizium anisopliae infection of Protaetia brevitarsis seluensis larvae using several effective microorganisms

  • Kwak, Kyu-Won;Kwon, Soon Woo;Nam, Sung-Hee;Park, Kwan-Ho;Kim, Eun-Sun;Lee, Hee-Sam;Choi, Ji-Young;Han, Myung-Sae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.36 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • The purpose of this study was to determine the best method for minimizing the occurrence of Metarhizium anisopliae infection of Protaetia brevitarsis seluensis during mass breeding on agricultural farms. There is a high demand for the use of P. b. seluensis larvae in animal feed and as food for humans. However, mass breeding results in the entomopathogenic fungal (usually M. anisopliae) infection of P. b. seluensis. A mixture of microorganisms (Bacillus subtilis, Lactobacillus plantarum, and Saccharomyces cerevisiae) delayed fungal infection by M. anisopliae, which infected fewer P. b. seluensis when the microorganism mixture was added to sawdust as feed for P. b. seluensis. When sawdust with the effective microorganisms (EM) was given to P. b. seluensis for 30 d, their mortality rate was approximately 35 % less than that of the control group, which was fed sawdust without the EM. In addition, the growth of M. anisopliae on agar media spread with each bacterium as inhibited by up to 80 % more than those spread with 4 % sodium hypochlorite, which is a harmless fungal inhibitor generally used in agricultural farms for disinfection.

A Bombyx mori Transcription Factor, ATFC Binds Directly to the UPRE of Molecular Chaperones

  • Goo, Tae-Won;Yun, Eun-Young;Kim, Sung-Wan;Park, Kwang-Ho;Hwang, Jae-Sam;Kwon, O-Yu;Kang, Seok-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.7 no.2
    • /
    • pp.133-137
    • /
    • 2003
  • Cells respond to an accumulation of unfolded proteins in the endoplasmic reticulum (ER) by increasing transcription of genes encoding molecular chaperones and folding enzymes. The information is transmitted from the ER lumen to the nucleus by intracellular signaling pathway, called the unfolded protein response (UPR). In Saccharomyces cerevisiae, such induction is mediated by the cis-acting unfolded response element (UPRE) which has been thought to be recognized by Hac1p transcription factor. We cloned the ATFC gene showing similarity with Hac1p, and then examined to determine whether ATFC gene product specifically binds to UPRE by electrophoretic mobility shift assays. ATFC gene product displayed appreciable binding ${to ^{32}}P-labelled$ UPRE. Therefore, we concluded that ATFC represents a major component of the putative transcription factor responsible for the UPR leading to the induction of ER-localized stress proteins.

Molecular Cloning of the Sec61p ${\gamma}$ Subunit Homologue Gene from the Mole Cricket, Gryllotalpa orientalis

  • Kim, Iksoo;Lee, Kwang-Sik;Jin, Byung-Rae;Kim, Eun-Sun;Lee, Heui-Sam;Ahn, Mi-Young;Sohn, Hung-Dae;Ryu, Kang-Sun
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.5 no.1
    • /
    • pp.73-77
    • /
    • 2002
  • The Sec61 trimeric complex ($\alpha$,$\beta$, and ${\gamma}$ subunits) is one of the Sec-complex responsible for post-translational protein translocation across the endoplasmic reticulum membrane in diverse organisms. In this study, a cDNA encoding the Sec61p ${\gamma}$ subunit homologue was isolated from the cDNA library of the mole cricket, Gryllotalpa orientalis. Sequence analysis of a 442-bp cDNA clone showed it to contain an open reading frame of 68 amino acid residues consisted of 204-bp. The homologues of the gene were found in the GenBank database in a diverse organism including insect, mammals, fungi, and plants. The deduced amino acid sequence of Sec61p ${\gamma}$ subunit homologue of the mole cricket showed the highest homology to the gene of the singly known insect, Drosophila melanogester (93% identity), and the least homology to that of the baker's yeast, Saccharomyces cerevisiae (37.2%). Phylogenetic analysis also confirmed a close relationship between the insect Sec61p ${\gamma}$ subunit homologues of G. orientalis and D. melanogester. Hydropathy analysis of the cricket mole and published other data suggested that the hydrophobic segment close to C-terminus is predicted to be the putative membrane anchor, Multiple alignment of the Sec61p ${\gamma}$ subunit homologue among several organisms showed the presence of several conserved domains including the conserved proline at position 28.

Effect of a Fermented Rice Protein Residue on the Taste Property of Yeast Extract (쌀단백질 잔사발효물이 효모추출물의 맛특성에 미치는 영향)

  • Park, Gang-Seok;Han, Gwi-Jung;Chung, Ha-Yull
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.413-419
    • /
    • 2011
  • For producing a high added-value natural seasoning ingredient, a yeast extract (Yx) was supplemented with a rice protein residue fermented with Bacillus licheniformis (Rfl) or with Bacillus subtilis (Rfs). A rice protein residue was obtained after enzymatic hydrolysis of rice protein which was used for preparing a yeast culture medium. Overall acceptabilities of the supplemented yeast extracts (YxRfl or YxRfs) were higher compared to pure yeast extract. Savory taste like umami was found to increase noticeably by adding a fermented rice protein residue to yeast extract, which was confirmed in taste sensor analysis and in sensory test. Beyond the presence of savory tasting amino acids such as Glu and Asp in a fermented rice protein residue, it is assumed that other soluble peptide fractions remained play an important role in enhancing taste of the supplemented yeast extracts. Thus, the yeast extract added with a fermented rice protein residue could be applied to manufacture a natural seasoning ingredient.

Quality characteristics and physiological activities of mulberry (Morus alba) vinegar (오디 식초의 품질 특성 및 생리활성)

  • Eun Jung Yim;Seung Wha Jo;Hyeon Jin Kang;Hyo Bin Oh;Young-Soo Kim;Do-Youn Jeong
    • Food Science and Preservation
    • /
    • v.30 no.4
    • /
    • pp.691-702
    • /
    • 2023
  • This study aimed to develop high value-added mulberry (Morus alba) vinegar by fermenting mulberry with yeast and acetic acid bacteria, for using it in various foods. To select the optimal strain for mulberry fermentation, different strains were tested and Saccharomyces cerevisiae SRCM101756 and Acetobacter pasteurianus SRCM102419, exhibiting excellent alcohol and acetic acid production ability during mulberry fermentation, were selected for fermentation. Mulberry vinegar was prepared using mulberry wine and the selected acetic acid bacteria, and the physicochemical properties and physiological effects were measured. The pH was 2.98 and total acidity was 4.70% by day 9 of fermentation, establishing the possibility of developing them into vinegars for industrial use. The angiotensin-glucosidase inhibition activity of mulberry vinegar increased from 13.22% to 19.19% in the 100-fold dilution, and from 42.35% to 46.11% in the 50-fold dilution, from before fermentation to after fermentation, respectively. The angiotensin-converting enzyme inhibition activity of mulberry vinegar was found to significantly increase from 44.82% before fermentation to 63.88% after fermentation in the 25-fold dilution. Moreover, a significant increase in pancreatic lipase inhibition activity after fermentation was observed. Thus, mulberry vinegar can be used as a functional material in vinegar and other foods.

Effects of Complex Probiotic Supplementation on Growth Performance, Nutrient Digestibility, Blood Metabolites, Noxious Gas and Fecal Microflora in Weaning Pigs (사료 내 복합생균제 첨가가 이유자돈의 사양성적, 영양소 소화율, 혈액성상, 분내 유해가스 및 분 중 미생물에 미치는 영향)

  • Kim, Dong-Woo;Choi, Yo-Han;Kim, Jo-Eun;Cho, Eun Seok;Jung, Hyun-Jung;Oh, Seung-Min;Kim, Jeong-Dae;Kim, Jin-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.266-273
    • /
    • 2020
  • This study was undertaken to determine the effects of diet supplementation with complex probiotics (CPB), on growth performance, nutrient digestibility, blood metabolites, noxious gas, and fecal microflora in weaning pigs. On the basis of body weight, a total of 234 weaned pigs (Landrace×Yorkshire×Duroc, 6.14±0.78kg) were randomly allotted to 3 treatments and 6 replicates (13 pigs per pen). The experimental diets were fed in a meal form for 28 days (days 0-14, PhaseI, and days 15-28, PhaseII). The dietary treatment groups were as follows: T1 (basal diet), T2 (T1+0.13% CPB) and T3 (T1+0.25% CPB). The CPB supplement contained Bacillus subtilis 1.0×106 CFU/g, Enterococcus faecium 1.0×106 CFU/g, Saccharomyces cerevisiae 1.0×106 CFU/g, Bacillus licheniformis 3.0×108 CFU/g, and Bacillus polyfermenticus 3.0×108 CFU/g. Pigs fed the T3 diet showed an increase (p<0.05) in the overall average daily gain and average daily feed intake, increased (p<0.05) crude protein digestibility in PhaseI, and greater (p<0.05) dry matter and gross energy digestibility in PhaseII. Supplementation of CPB had no effect on the blood profile. Furthermore, pigs fed the T3 diet had lower (p<0.05) NH3 emission and overall count of fecal Clostridium spp. In conclusion, we believe that CPB supplementation has a beneficial effect on growth performance, nutrient digestibility, noxious gas, and fecal microflora in weaning pigs.

Ethanol Fermentation of Fusant between Heterologous Transformant of Saccharomyces cerevisiae and Candida tropicalis in Mini-jar Fermentor Scale (Mini-jar fermentor Scale에서의 Fusant의 Ethanol 발효)

  • Seu, Jung-Hwn;Kim, Young-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.1
    • /
    • pp.8-13
    • /
    • 1989
  • The optimum conditions for ethanol fermentation and ethanol productivity of the fusant ESC-14-15 were examined in a mini-jar formentor scale (working volume : 2.5 liters) to assess the possibility of practical application. Addition of yeast extract to fermentation broth greatly enhanced the ethanol productivity and shortened the period of fermentation. The pH 4.2 was more favorable than pH 5.5 with respect to ethanol productivity and fermentation speed. The optimum concentration of liquefied potato starch for ethanol fermentation of FSC-14-15 was 15%(w/v) and the corresponding productivity was 8.7%(v/v) of ethanol with an efficiency of 80.6% to the theoretical maximum. When the fresh fermentation broth containing 20% of liquefied potato starch was inoculated with love(v/v) of inoculum, the fusant FSC-14-75 produced 11.0%(v/v) of ethanol in 4 days, which is considered comparable to that from an industrial process. From the liquefied cassava starch or the equal mixture of liquefied barley and sweet potato starch prepared according to the same method as in the industrial process except saccharification step, the fusnnt FSC-14-75 produced 8.5%(v/v) or 7.6%(v/v) of ethanol in 4 days, respectively.

  • PDF

Continuous Alcohol Fermentation by Cell Recycling Using Hollow Fiber Recycle Reactor (Hollow Fiber Recycle Reactor를 이용한 알콜연속 발효)

  • 이시경;박경호;백운화;장호남
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.2
    • /
    • pp.193-198
    • /
    • 1986
  • Improvement of productivity in ethanol fermentation was attempted using a hollow fiber bioreactor (HFR) where Saccharomyces cerevisiac var. ellipsoideus cells were recycled to achieve a high yeast concentration. Industrial wort was used as the fermentation media without supplying any additional nutrients. The performances in hollow fiber recycle reactor (HFR) were compared with those of batch and continuous cultures. In a continuous culture with 11$^{\circ}$P and 15$^{\circ}$P wort media final ethanol concentrations were 4.71% and 5.82% (v/v) and yields 86.2% and 78.6% respectively when the dilution rate (D) was 0.1 h$^{-1}$, in contrast, the ethanol concentration and productivity in HFR were 7.64%(v/v) and 6.1g/l/h at D=0.1h$^{-1}$ with 15$^{\circ}$P media. When the dilution rate was increased to 0.2 h$^{-1}$, the concentration and the Productivity were 7.62% (v/v) and 12.2g/l/h. At D=0.3h$^{-1}$ the sugar was completely consumed and the productivity was 18.1g/l/h. This correponds to 4 times that in continuous system and 16.3 times that in the batch system performed in comparable conditions.

  • PDF