• Title/Summary/Keyword: inductive power transfer

Search Result 141, Processing Time 0.027 seconds

A 20kHz Inverter for Inductive Charging System of Electric Vehicle (전기자동차 비접촉식 충전시스템을 위한 20kHz 인버터 설계)

  • Kim, Chul-Woo;Kim, Sang-Beom;Soh, Joon-Young;Lim, You-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1175-1176
    • /
    • 2011
  • Electric Vehicle Supply Equipment(EVSE) is a system or an equipment to supply electric power for charging the traction batteries on the electric vehicle. EVSEs are classified with a conductive charging system and an inductive charging system by the power transfer method. Inductive charging systems are necessary to use high frequency converters to increase the output power and to reduce the size of the charging systems. In this paper, a 20kHz inverter for inductive charging system has been designed and PSCAD/EMTDC have been used to simulate the output characteristics of the 20kHz inverter.

  • PDF

An Inductively Coupled Power and Data Link with Self-referenced ASK Demodulator and Wide-range LDO for Bio-implantable Devices

  • Park, Byeonggyu;Yun, Tae-Gwon;Lee, Kyongsu;Kang, Jin-Ku
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.120-128
    • /
    • 2017
  • This paper describes a neural stimulation system that employs an inductive coupling link to transfer power and data wirelessly. For the reliable data and power delivery, a self-referenced amplitude-shift keying (ASK) demodulator and a wide-range voltage regulator are suggested and implemented in the proposed stimulator system. The prototype fabricated in 0.35 um BCD process successfully transferred 1.2 Kbps data bi-directionally while supplying 4.5 mW power to internal MCU and stimulation block.

The characteristic of IPT system used for PRT vehicle by various air-gap (공극변화에 따른 소형궤도차량 유도전력급전 시스템의 특성)

  • Han, K.H.;Lee, B.S.;Baek, S.H.;Kwon, S.Y.;Park, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1087-1088
    • /
    • 2006
  • In this paper, the inductive power collector using electromagnetic Induction for vehicle such as the PRT(Personal Rapid Transit) system is suggested and some ideas for power collector design to improve the power transfer performance are presented. The inductive power of secondary part is related to amount of linked flux to secondary part by the length of air-gap, which is expected by such a system parameter as mutual inductance. This paper will study for the transfer characteristic of power from input to output and equation including mutual inductance.

  • PDF

Investigation of a SP/S Resonant Compensation Network Based IPT System with Optimized Circular Pads for Electric Vehicles

  • Ma, Chenglian;Ge, Shukun;Guo, Ying;Sun, Li;Liu, Chuang
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2359-2367
    • /
    • 2016
  • Inductive power transfer (IPT) systems have become increasingly popular in recharging electric vehicle (EV) batteries. This paper presents an investigation of a series parallel/series (SP/S) resonant compensation network based IPT system for EVs with further optimized circular pads (CPs). After the further optimization, the magnetic coupling coefficient and power transfer capacity of the CPs are significantly improved. In this system, based on a series compensation network on the secondary side, the constant output voltage, utilizing a simple yet effective control method (fixed-frequency control), is realized for the receiving terminal at a settled relative position under different load conditions. In addition, with a SP compensation network on the primary side, zero voltage switching (ZVS) of the inverter is universally achieved. Simulations and experiments have been implemented to validate the favorable applicability of the modified optimization of CPs and the proposed SP/S IPT system.

6.78MHz Capacitive Coupling Wireless Power Transfer System

  • Yi, Kang Hyun
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.987-993
    • /
    • 2015
  • Wireless power transfer technologies typically include inductive coupling, magnetic resonance, and capacitive coupling methods. Among these methods, capacitive coupling wireless power transfer (CCWPT) has been studied to overcome the drawbacks of other approaches. CCWPT has many advantages such as having a simple structure, low standing power loss, reduced electromagnetic interference (EMI) and the ability to transfer power through metal barriers. In this paper, the CCWPT system with 6.78MHz class D inverter is proposed and analyzed. The proposed system consists of a 6.78MHz class D inverter with a LC low pass filter, capacitor between a transmitter and a receiver, and impedance transformers. The system is verified with a prototype for charging mobile devices.

Contactless Power Charger for Light Electric Vehicles Featuring Active Load Matching

  • Jiang, Wei;Xu, Song;Li, Nailu
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.102-110
    • /
    • 2016
  • Contactless power transfer technology is gaining increasing attention in city transportation applications because of its high mobility and flexibility in charging and its commensurate power level with conductive power transfer method. In this study, an inductively coupled contactless charging system for a 48 V light electric vehicle is proposed. Although this study does not focus on system efficiency, the generic problems in an inductively coupled contactless power transfer system without ferromagnetic structure are discussed. An active load matching method is also proposed to control the power transfer on the receiving side through a load matching converter. Small signal modeling and linear control technology are applied to the load matching converter for port voltage regulation, which effectively controls the power flow into the load. A prototype is built, and experiments are conducted to reveal the intrinsic characteristics of a series-series resonant inductive power charger in terms of frequency, air gap length, power flow control, coil misalignment, and efficiency issues.

Secondary Side Output Voltage Stabilization of an IPT System by Tuning/Detuning through a Serial Tuned DC Voltage-controlled Variable Capacitor

  • Tian, Jianlong;Hu, Aiguo Patrick;Nguang, Sing Kiong
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.570-578
    • /
    • 2017
  • This paper proposes a method to stabilize the output voltage of the secondary side of an Inductive Power Transfer (IPT) system through tuning/detuning via a serial tuned DC Voltage-controlled Variable Capacitor (DVVC). The equivalent capacitance of the DVVC changes with the conduction period of a diode in the DVVC controlled by DC voltage. The output voltage of an IPT system can be made constant when this DVVC is used as a variable resonant capacitor combined with a PI controller generating DC control voltage according to the fluctuations of the output voltage. Since a passive diode instead of an active switch is used in the DVVC, there are no active switch driving problems such as a separate voltage source or gate drivers, which makes the DVVC especially advantageous when used at the secondary side of an IPT system. Moreover, since the equivalent capacitance of the DVVC can be controlled smoothly with a DC voltage and the passive diode generates less EMI than active switches, the DVVC has the potential to be used at much higher frequencies than traditional switch mode capacitors.

High Efficiency Operation of the IPT converter with Full and Half bridge Control for Electric Vehicles (전기자동차용 IPT 컨버터의 풀브릿지-하프브릿지 제어를 통한 고효율 운전 방법)

  • Ann, Sang-Joon;Joo, Dong-Myoung;Kim, Min-Kook;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.423-430
    • /
    • 2017
  • This paper proposes a control methodology for a high efficiency operation of an inductive power transfer (IPT) converter by combining full bridge (FB) and half bridge (HB) controls. To apply the proposed control to the IPT converter, the characteristics of each control method are analyzed. By examining the output voltages of the IPT converter and a theoretical loss analysis, the control shifting points between FB and HB controls are evaluated in accordance with the coupling coefficients and the load. Based on the control shifting points, the FB-HB control algorithm is implemented. By applying FB-HB control, high efficiency operation at the light load condition can be achieved.

Two-stage Inductive Power Transfer Charger for Electric Vehicles (전기자동차 충전기용 2-stage 자기유도 무선전력전송 시스템)

  • Kim, Min-Jung;Joo, Dong-Myoung;Lee, Byoung Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.169-170
    • /
    • 2016
  • 본 논문에서는 전기자동차 무선충전기 송수신 코일의 결합계수가 변동되는 조건에서, 수신 측에 DC-DC 컨버터를 사용하지 않고, 넓은 출력전압 범위를 갖는 전기자동차 배터리팩을 충전하기 위한 자기유도 무선전력전송 (Inductive Power Transfer, IPT) 충전기 시스템과 제어 알고리즘을 제안한다. 전기자동차용 무선 충전기 시스템은 승강압 역률보상 컨버터와 Bridgeless 정류기를 포함하는 자기유도 IPT 컨버터로 구성되며, 시뮬레이션을 통하여 시스템과 제어기의 타당성을 검증한다.

  • PDF

Design of Two Stage Inductive Power Transfer System for Electric Vehicle Chargers (전기자동차 충전기용 2 stage IPT 시스템 설계)

  • Ann, Sangjoon;Kim, Minjung;Kim, Min-Kook;Lee, Byoung Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.112-113
    • /
    • 2017
  • 본 논문에서는 전기자동차용 배터리 충전기의 특징과 설계조건을 반영한 2 stage 자기유도방식 무선전력전송 (inductive power transfer, IPT) 시스템의 설계 방법을 제안한다. 시스템 설계 시 고려사항은 송신측 DC link 전압 범위와 수신측 듀티가변 범위, 배터리 전압 범위 등이 있다. 이와 같은 고려사항을 반영하여 2 stage IPT 시스템의 입 출력전압 범위를 선정하고 전압 전류 스트레스 분석을 통해 공진네트워크를 설계한다.

  • PDF