• Title/Summary/Keyword: inductive coil

Search Result 123, Processing Time 0.022 seconds

Design of Signal Processing Circuit for Semi-implantable Middle Ear Hearing Device with Bellows Transducer (벨로즈형 진동체를 갖는 반이식형 인공중이용 신호처리회로 설계)

  • Kim, Jong Hoon;Shin, Dong Ho;Seong, Ki Woong;Cho, Jin-Ho
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.1
    • /
    • pp.63-71
    • /
    • 2017
  • In this paper, a signal processing circuit for semi-implantable middle ear hearing device is designed using the TCBT which is recently proposed for a new middle ear transducer that can be implanted at round window of cochlea. The designed semi-implantable hearing device transmits digital sound signal from external device located at behind the ear to the internal device implanted under the skin using inductive coupling link methods with high efficiency. The coils and signal processing circuits are designed and implemented considering the total transmission and reception distance including skin thickness of temporal bone for the semi-implantable hearing device. And also, to improve the data transmission efficiency, the output circuits which can supply sufficient signal power is designed. In order to confirm operation of semi-implantable hearing device using inductive coupling link, the circuit analysis was performed using PSpice, and the performance was verified by implementing a signal processing board of an available size.

Development of Inductive and Capacitive Type Intraocular Pressure (IOP) Sensor to Improve Sensitivity and Minimize Size (민감도 향상과 센서 소형화를 위한 자기 및 용량형 안압센서의 개발)

  • Jang, Cheol In;Shin, Kyeong-Sik;Yun, Kwang-Seok;Kim, Yong Woo;Kang, Ji Yoon;Lee, Soo Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.409-415
    • /
    • 2014
  • We had presented an inductive type intraocular pressure sensor (L-sensor) in previous work. The distance between a micro coil and a ferrite on the membrane was modulated by pressure, and as a result the inductance and resonant frequency were changed. However, L-sensor has some problems to implant in eyes. First problem is low sensitivity. When L-sensor was implanted in rabbit's eyes, resonant frequency of L-sensor was very hard to detect. Second problem is biocompatibility. Size of L-sensor is $6{\times}7{\times}1.2mm$. When L-sensor was implanted in the eyes, it caused the inflammation. Therefore, this study suggests an inductive and capacitive type IOP sensor (LCsensor). The sensitivity of the LC-sensor 27.3 kHz/mmHg under 60mmHg. It is much larger than 14 kHz/mmHg of the L-sensor. And the size of LC-sensor is 47% smaller than L-sensor. After 2 weeks from the implantation of LC-sensor into rabbit eyes, we measured the changes of resonant frequency of LC-sensor according to increased IOP by Balanced Salt Solution (BSS) injection. As a result, the sensitivity of LC-sensor in in vivo test is 25 kHz/mmHg. That is similar to the sensitivity of in vitro test.

Development of a Non-contact Electric Power Transferring System by Using an Inductive Coupling Method (자기 유도방식을 이용한 550 VA 급 비접촉 전력전송기기의 개발)

  • Kim, Jin-Sung;Lee, Yu-Ki;Kim, Se-Ryong;Lee, Jae-Gil;Park, Gwan-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.3
    • /
    • pp.97-102
    • /
    • 2012
  • In this paper, a non-contact power transferring has been performed. Power Transferring by using an electromagnetic inductive coupling is more suitable for high power transmission than by using a magnetic resonance method. Power transferring system has been designed with Loading Distribution Method to divide the electric and magnetic loading for designing the magnetic core and electric coil. To design optimum shapes of magnetic yoke, 3D finite element analysis has been performed. Experimental results show good agreement with numerical ones. So, it could be adopted in the electric power transferring system for a short-distance wireless electric power transferring machine.

Loss and Efficiency Dependence of a 6.78 MHz, 100 W, 30 cm Distance Wireless Power Transfer System on Cable Types (6.78 MHz, 100 W, 30 cm 거리 무선 전력 전송 시스템의 전선별 손실 및 효율 비교)

  • Lee, Seung-Hwan;Lee, Byung-Song;Jung, Shin-Myung;Park, Chan-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1651-1657
    • /
    • 2015
  • In MHz operating wireless power transfer systems, skin- and proximity-effect losses in the transmitter and the receiver coils dominate the coil-to-coil efficiency of the system. A Litz-wire was regarded as a common solution for minimizing such Ohmic losses in high frequencies. In this paper, equivalent series resistances of 12 different cables including Litz-wire and copper tubing have been calculated and measured for a 6.78 MHz, 100W, 30 cm wireless power transfer system. It has been shown that the copper tubing has lower resistances compared to the Litz-wire in that frequency and a wireless power transfer system with the copper tubing was able to achieve much higher efficiency than a system using the Litz-wire. Calculations of the resistances and efficiencies were accomplished with analytical equations and those calculations were evaluated by experimental results.

Fiber Fabry-Perot type Optical Current Transducer with Frequency Ramped Signal Processing Scheme

  • Park, Youn-Gil;Seo, Wan-Seok;Lee, Chung-E.;Taylor, Henry-F.
    • Journal of the Optical Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.74-79
    • /
    • 1998
  • The use of a fiber Fabry-Perot interferometer (FFPI) as an optical current transducer is demonstrated. A conventional inductive pickup coil converts the time-varying current I(t) being measured to a voltage waveform V(t) applied across a piezeolectric strip to which the FFPI is bonded. The strip experiences a longitudinal expansion and contraction, resulting in an optical phase shift ${\phi}(t)$ in the fiber proportional to V(t). This phase shift is measured using a frequency-modulated semiconductor light source, photodiodes to monitor the reflected light from the FFPI and the laser power, and a digital signal processor. Calibration routines compute V(t) and I(t) from the measured phase shift at a l KHz rate. Response to 60 Hz ac over the design range 0-1300A rms is characterized Transient response of the FFPI transducer is also measured.

The Study of Designing the Parameters of DC Reactor for Inductive Superconducting Fault Current Limiter By Using Finite Element Method (유한요소법을 이용한 유도형 고온 초전도 한류기용 DC Reactor의 설계 파라미터 결정법에 관한 연구)

  • 김용구;강형구;김태중;윤용수;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.326-329
    • /
    • 2002
  • The dc reactor type superconducting fault current limiter is composed of a power converter, magnetic core reactors and a do reactor that is a superconducting coil. When a fault occurs, the dc reactor maintains the stability of system by limiting its fault current. In this study, we focus on the design of the dc reactor using FEM(Finite Element Method). In order to design it, various elements should be considered such as magnetic field intensity, Lorentz's force, its inductance and so forth. Firstly, we forecast the values of those elements from the simulation of FEM and then measured with a copper wire magnet. Finally, verify the reliability of this FEM method by comparing with two results.

  • PDF

Fabrication and Test of Persistent Current Switch for HTS Magnet System

  • Hyoungku Kang;Kim, Jung-Ho;Jinho Joo;Yoon, Yong-Soo;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.92-96
    • /
    • 2003
  • This paper deals with the characteristics of persistent current switch (rCS) system fer applied HTS magnet system. To apply the high-Tc superconductor in superconducting machine such as motror, generator, MAGLEV, MRI, and NMR, the study on high-Tc superconducting persistent current mode must be performed. In this experiment, the PCS system consists otd superconducting magnet, PCS and magnet power supply. The superconducting magnet was fabricated by connecting four double pancake coils (DPCs) in series. The PCS was inductive double pancake coil type and heated up by the SUS 303L tape heater. The optimal length of PCS was calculated and thermal quench state of PCS was simulated by using finite element method(FEM) and compared with experimental results. The optimal energy to normalize the PCS was calculated and introduced. Finally, the persistent current was observed with respect to various ramping up rate and magnitude of charging current.

Analysis of Electrical Property on Inductively Coupled Ar Plasma for Gas Pressure (유도결합형 Ar 플라즈마의 압력에 따른 전기적 특성분석)

  • 조주웅;이영환;김광수;허인성;최용성;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.133-136
    • /
    • 2004
  • Low-Pressure inductively coupled RF discharge sources have important industrial applications mainly because they can provide a high-density electrodeless plasma source with low ion energy and low power loss. In an inductive discharge, the RF power is coupled to the plasma by an electromagnetic interaction with the current flowing in a coil. In this paper, the experiments have been focussed on the electric characteristic and carried out using a single Langmuir probe. The internal electric characteristics of inductively coupled Ar RF discharge at 13.56(MHz) have been measured over a wide range of power at gas pressure ranging from 1∼70(mTorr).

Electromagnetic Simulation & Electrical.Optical Characteristics by Changing Ferrite Position in Antenna (안테나에서 페라이트 위치 변화에 따른 전자계 시뮬레이션과 전기적.광학적 특성)

  • Lee, Joo-Ho;Yang, Jong-Kyung;Lee, Jong-Chan;Choi, Myung-Hyun;Kim, Byung-Tack;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.816-820
    • /
    • 2008
  • The RF inductive discharge of inductively couples plasma (ICP) continues to attract growing attention as an effective plasma source in many industrial applications, the best known of which are plasma processing and lighting technology. Although most practical ICPs operate at 13.56 [MHz] and 2.65 [MHz], the trend to reduce the operating frequency is clearly recognizable from recent ICP developments. In an electrodeless fluorescent lamp, the use of a lower operating frequency simplifies and reduces cost of RF matching systems and RF generators and can eliminate capacitive coupling between the inductor coil and plasma, which could be a strong factor in wall erosion and plasma contamination. In this study, We discussed simulation and experimental results when changing ferrite position in antenna.

A Design of Multi-Channel Biotelemetry for ECG Encoding and Transmission Over the Public Telephone Line (공중 전화회선용 다중 채널 ECG데이터 원격 측정시스템 설계)

  • Gye, Sin-Ung;Jang, Won-Seok;Hong, Seung-Hong
    • Journal of Biomedical Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.21-34
    • /
    • 1986
  • In this paper, we described the ECG telemetry system via the Public Telephone Line. The system consist of a signal acquisition and measurement section, a signal processing section, and a signal transmission section. It used 8 bits microprocessor. The transmission section is composed of 3 ch. analog modulators and 1 ct. digital modem. Especially, using the digital modem, signal is transmitted with about 50n data reduction ratio by the TP (Turning Point) algorithm. The acoustic coupler or inductive coil for linking the public telephone line are used. The speed of the digital modem is 300 baud rate. The MCBS (Multi Channel Biotelemetry System) is tested and evaluated through the experiment.

  • PDF