• Title/Summary/Keyword: induction time.

Search Result 1,971, Processing Time 0.028 seconds

On the Detection of Induction-Motor Rotor Fault by the Combined “Time Synchronous Averaging-Discrete Wavelet Transform” Approach

  • Ngote, Nabil;Ouassaid, Mohammed;Guedira, Said;Cherkaoui, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2315-2325
    • /
    • 2015
  • Induction motors are widely used in industrial processes since they offer a very high degree of reliability. But like any other machine, they are vulnerable to faults, which if left unmonitored, might lead to an unexpected interruption at the industrial plant. Therefore, the condition monitoring of the induction motors have been a challenging topic for many electrical machine researchers. Indeed, the effectiveness of the fault diagnosis and prognosis techniques depends very much on the quality of the fault features selection. However, in induction-motor drives, rotor defects are the most complex in terms of detection since they interact with the supply frequency within a restricted band around this frequency, especially in the no-loaded case. To overcome this drawback, this paper deals with an efficient and new method to diagnose the induction-motor rotor fault based on the digital implementation of the monitoring algorithm based on the association of the Time Synchronous Averaging technique and Discrete Wavelet Transform. Experimental results are presented in order to show the effectiveness of the proposed method. The obtained results are largely satisfactory, indicating a promising industrial application of the combined “Time Synchronous Averaging – Discrete Wavelet Transform” approach.

Robust On-line Rotor Time Constant Estimation for Induction Machines

  • Yoo, Anno
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1000-1007
    • /
    • 2014
  • This paper proposes an on-line rotor time constant estimation strategy for indirect field oriented induction machines. The performance of the indirect field oriented control is dependent especially on the rotor time constant whose value varies according to the temperature. The proposed method calculates the difference between the nominal rotor time constant and the real value from the d- and q-axis integration terms of a proportional integral (PI) current regulator and the demanded voltages of the induction machine to regulate the current in the steady state. Because the proposed strategy has a simple structure and is available in wide speed and torque ranges, the proposed method can be easily used in the industrial field. The effectiveness of proposed strategy is verified with simulations and a 7.5kW experimental setup.

3D Transient Analysis of Linear Induction Motor Using the New Equivalent Magnetic Circuit Network Method

  • Jin Hur;Kang, Gyu-Hong;Hong, Jung-Pyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.122-127
    • /
    • 2003
  • This paper presents a new time-stepping 3-D analysis method coupled with an external circuit with motion equation for dynamic transient analysis of induction machines. In this method, the magneto-motive force (MMF) generated by induced current is modeled as a passive source in the magnetic equivalent network. So, by using only scalar potential at each node, the method is able to analyze induction machines with faster computation time and less memory requirement than conventional numerical methods. Also, this method is capable of modeling the movement of the mover without the need for re-meshing and analyzing the time harmonics for dynamic characteristics. From comparisons between the results of the analysis and the experiments, it is verified that the proposed method is capable of estimating the torque, harmonic field, etc. as a function of time with superior accuracy.

Operating Characteristics of Arc-induction Type DC Circuit Breaker (아크유도형 DC 차단기의 동작 특성)

  • Park, Sang-Yong;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.981-986
    • /
    • 2018
  • AC(alternating current) CB(circuit breaker) at the fault occurred in the existing AC distribution system is limiting the fault current through zero cross-point. However, DC(direct current) CB does not have zero cross-point. Therefore, arc occurred by on-off operation of DC CB is very huge. Nowadays, many research team are studying the way to decrease breaking time, which is one of the essential conditions in DC CB. We suggested novel arc-induction type DC CB in this paper. The proposed arc-induction type DC CB is composed of the mechanical Arc ring and DC CB. We confirmed the operation of arc-induction type DC CB through the HFSS(High Frequency Structure Simulator) 3D simulation program and performed the experiment for operation characteristics. Results showed that arcing time of the arc-induction type DC CB by using induction ring was faster than existing mechanical DC CB. On the transient system, we confirmed stable operation characteristics of the arc-induction type DC CB through the simulation and experimental results. We expect that the proposed arc-induction type DC CB technology is will go to stay ahead of the existing DC CB technology.

A New Hybrid "Park's Vector - Time Synchronous Averaging" Approach to the Induction Motor-fault Monitoring and Diagnosis

  • Ngote, Nabil;Guedira, Said;Cherkaoui, Mohamed;Ouassaid, Mohammed
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.559-568
    • /
    • 2014
  • Induction motors are critical components in industrial processes since their failure usually lead to an unexpected interruption at the industrial plant. The studies of induction motor behavior during abnormal conditions and the possibility to diagnose different types of faults have been a challenging topic for many electrical machine researchers. In this regard, an efficient and new method to detect the induction motor-fault may be the application of the Time Synchronous Averaging (TSA) to the stator current Park's Vector. The aim of this paper is to present a methodology by which defects in a three-phase wound rotor induction motor can be diagnosed. By exploiting the cyclostationarity characteristics of electrical signals, the TSA method is applied to the stator current Park's Vector, allowing the monitoring of the induction motor operation. Simulation and experimental results are presented in order to show the effectiveness of the proposed method. The obtained results are largely satisfactory, indicating a promising industrial application of the hybrid Park's Vector-TSA approach.

Fault Detection and Diagnosis Systems of Induction Machines using Real-Time Stochastic Modeling Approach (실시간 확률 모델링 기법을 이용한 유도기기의 고장검출 및 진단시스템)

  • Lee, Jin-Woo;Kim, Kwang-Soo;Cho, Hyun-Cheol;Lee, Young-Jin;Lee, Kwon-Soon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.241-248
    • /
    • 2009
  • This paper presents stochastic methodology based fault detection algorithm for induction motor systems. We measure current of healthy induction motors by means of hall sensor systems and then establish its probability distribution. We propose online probability density estimation which is effective in real-time implementation due to its simplicity and low computational burden. In addition, we accomplish theoretical analysis of the proposed estimation to demonstrate its convergence property by using statistical convergence and system stability theories. We apply our fault detection approach to three-phase induction motors and achieve real-time experiment for evaluating its reliability and practicability in industrial fields.

Analysis of Inverter-Fed Induction Motor Using F.E.M and Harmonic Equivalent Circuit (슬롯피치 경계 조건을 이용한 인버터 구동 유도 전동기의 회전자 등가회로 정수 추출 및 특성해석)

  • Lee, Geon-Ho;Kim, Byeong-Tae;Gwon, Byeong-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.7
    • /
    • pp.331-338
    • /
    • 2002
  • An inverter-fed induction is driven by a harmonic voltage source so that it is necessary to be analysed by time-stepping F.E.M. But it takes so long time that disadvantageous to design. This paper presents a simple analysis method for inverter-fed induction motor using FEM and harmonic equivalent circuit. First, the rotor bar resistance and the leakage reactance are determinated by FEA for 1 slot region in rotor to consider the skin effect and the saturation. Secondly, the characteristic of the motor is analyzed by the harmonic equivalent circuits consisting of the obtained parameters from the FEA. This method is carried out to analyze an induction motor driven by the sinusoidal voltage and the inverter. The results are verified by comparing with those of the time-step F.E.A and the experiment.

Crystallization Characteristics of Metallocene Low Density Polyethylene (메탈로센 선형 저밀도 폴티에틸렌의 결정화 거동)

  • 김경룡;한정우;조봉규;강호종
    • Polymer(Korea)
    • /
    • v.25 no.6
    • /
    • pp.833-839
    • /
    • 2001
  • The crystallization characteristics of metallocene linear low density polyethylene was investigated by small angle light scattering and comparison was made with Ziegler-Natta linear low density polyethylene. The special efforts were made to find out the effects of branching number, length of branching and co-monomer content of m-LLDPE on the crystallization behavior of m-LLDPE. It was found that m-LLDPE has longer induction time to start crystallization from the amorphous state than that of conventional LLDPE with similar branching number, but the rate of crystallization seems not change much in both LLDPEs. Lowering of branching number in m-LLDPE resulted in both increasing of rate of crystallization and reducing induction time to crystallize. In general, the maximum size of spherulites of m-LLDPE is bigger than that of conventional LLDPE.

  • PDF

Joining characteristics of BGA solder bump by induction heating (유도가열에 의한 BGA 솔더 범프의 접합특성에 관한 연구)

  • 방한서;박현후
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.86-88
    • /
    • 2003
  • The characteristic of induction heating solder bump(solder ball: Sn-37Pb, Sn-3.5Ag, Sn-3.0Ag-0.5Cu) has analyzed in this paper. The initial condition of induction heating depends on the time and current. The shape of lead-free solder bump is better than lead solder. The shear strength of lead solder bump has decreased with aging time. The average of shear strength of solder bump is about 10N, 11N, and 11N respectively. The lead-free solder bump's shear strength is better than lead solder and varies irregularly with aging time.

  • PDF

Characteristic of Current and Temperature according to Normal and Abnormal Operations at Induction Motor of 2.2 kW and 3.7 kW (2.2 kW와 3.7 kW 유도전동기의 정상과 구속운전에 따른 전류 및 온도 특성)

  • Jong-Chan Lee;Doo-Hyun Kim;Sung-Chul Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.3
    • /
    • pp.35-42
    • /
    • 2023
  • This study analyzed the current and temperature characteristics of major components of an induction motor during normal and abnormal operations as functions of the difference in the rated capacities of medium and large-sized motors widely used in industrial settings. The temperature rise equation of the induction motor winding was derived through locked-rotor operation experiments and linear regression analysis. When the ambient temperature is 40 ℃, the time to reach 155 ℃, the temperature limit of the insulation class (F class) of the winding of the induction motor, was confirmed to be 48 seconds for the 2.2 kW induction motor and 39 seconds for the 3.7 kW induction motor. This means that when the rated capacity is large or the installation environment is high temperature, the time to reach the temperature limit of the insulation class during locked-rotor operation is short, and the risk of insulation deterioration and fire is high. In addition, even if the EOCR (Electronic Over Current Relay) is installed, if the setting time is excessively set, the EOCR does not operate even if the normal and locked-rotor operation of the induction motor is repeated, and the temperature limit of the insulation grade of the winding of the induction motor is exceeded. The results of this study can be used for preventive measures such as the promotion of electrical and mechanical measures for the failure of induction motors and fire prevention in industrial sites, or the installation of fire alarm systems.