• Title/Summary/Keyword: induction of electricity

Search Result 56, Processing Time 0.018 seconds

Analysis of Body Induced Current in Middle Frequency Range Using Quasi-Static FDTD (중간주파수 대역에서 준정적(Quasi-Static) FDTD 기법을 이용한 인체 유도전류 분석)

  • Byun, Jin-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.141-149
    • /
    • 2009
  • In this paper, quasi-static FDTD method is implemented by FORTRAN programming, and it is used for analysis of body induced current in middle frequencies. The quasi-static FDTD program is validated by comparing the calculation result with analytic solution of the test model, to which it is difficult to apply conventional FDTD. It is confirmed that the time-step is reduced by $5.68{\times}10^6$ times. Using validated numerical technique, body induced current distribution in high resolution 3-D human model is calculated for 20[kHz] magnetic field exposure and 1[MHz] electric field exposure. Also, the effect of grounding condition of both feet on the distribution and amplitude of the induced current is analyzed. It is expected that this research can be applied to various fields including safety assessment of body induced current and development of diagnosis devices using bio-electricity.

Safety-Related Bus Voltage Variation during Large Induction Motor Start-up in 1400MW Light Water Reactor Type Nuclear Power Plant (1400MW급 경수로형 원자력발전소의 대용량 유도전동기 시동시 안전관련 모선 전압 변동)

  • Lee, Cheoung Joon;Kim, Chang Kook;Noh, Young Seok;Joo, Young Hwan
    • Plant Journal
    • /
    • v.12 no.4
    • /
    • pp.37-43
    • /
    • 2016
  • Power system which provides electricity to the accident mitigation load for nuclear power plant should be verified to maintain the proper voltage level under the various loading and source conditions. For this purpose, it was needed to collect the voltage data of safety related buses during operation of the Reactor Coolant Pump(RCP) motor and Component Cooling Water Pump(CCWP) motor, respectively, under the certain loading condition of the plant. The data (such as, voltage, current, power factor) collected from actual measurement were used to modify the existing ETAP model and then the reanalysis was conducted to simulate the testing conditions. Through these actual measurement and analysis, it ensures that the existing electrical system analysis including assumptions and methods was conducted properly. Finally, the voltage of safety related buses was not dropped below the acceptable level, and the discrepancy between two results was within the limit.

  • PDF

Development of Turbine Rotor Bending Straightening Numerical Model using the High Frequency Heating Equipment (고주파 가열 장비를 활용한 터빈로터 휨 교정수식모델 개발)

  • Park, Junsu;Hyun, Jungseob;Park, Hyunku;Park, Kwangha
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.269-275
    • /
    • 2021
  • The turbine rotor, one of the main facilities in a power plant, it generates electricity while rotating at 3600 RPM. Because it rotates at high speed, it requires careful management because high vibration occurs even if it is deformed by only 0.1mm. However, bending occurs due to various causes during turbine operating. If turbine rotor bending occurs, the power plant must be stopped and repaired. In the past, straightening was carried out using a heating torch and furnace in the field. In case of straightening in this way, it is impossible to proceed systematically, so damage to the turbine rotor may occur and take long period for maintenance. Long maintenance period causes excessive cost, so it is necessary to straighten the rotor by minimizing damage to the rotor in a short period of time. To solve this problem, we developed a turbine rotor straightening equipment using high-frequency induction heating equipment. A straightening was validated for 500MW HIP rotor, and the optimal parameters for straightening were selected. In addition, based on the experimental results, finite element analysis was performed to build a database. Using the database, a straightening amount prediction model available for rotor straightening was developed. Using the developed straightening equipment and straightening prediction model, it is possible to straightening the rotor with minimized damage to the rotor in a short period of time.

Optimization and Application Research on Triboelectric Nanogenerator for Wind Energy Based High Voltage Generation (정전발전 기반 바람에너지 수확장치의 최적화 및 고전압 생성을 위한 활용 방안)

  • Jang, Sunmin;Ra, Yoonsang;Cho, Sumin;Kam, Dongik;Shin, Dongjin;Lee, Heegyu;Choi, Buhee;Lee, Sae Hyuk;Cha, Kyoung Je;Seo, Kyoung Duck;Kim, Hyung Woo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.243-248
    • /
    • 2022
  • As the scope of use of portable and wearable electronic devices is expanding, the limitations of heavy and bulky solid-state batteries are being revealed. Given that, it is urgent to develop a small energy harvesting device that can partially share the role of a battery and the utilization of energy sources that are thrown away in daily life is becoming more important. Contact electrification, which generates electricity based on the coupling of the triboelectric effect and electrical induction when the two material surfaces are in contact and separated, can effectively harvest the physical and mechanical energy sources existing in the surrounding environment without going through a complicated intermediate process. Recently, the interest in the harvest and utilization of wind energy is growing since the wind is an infinitely ecofriendly energy source among the various environmental energy sources that exist in human surroundings. In this study, the optimization of the energy harvesting device for the effective harvest of wind energy based on the contact electrification was analyzed and then, the utilization strategy to maximize the utilization of the generated electricity was investigated. Natural wind based Fluttering TENG (NF-TENG) using fluttering film was developed, and design optimization was conducted. Moreover, the safe high voltage generation system was developed and a plan for application in the field requiring high voltage was proposed by highlighting the unique characteristics of TENG that generates low current and high voltage. In this respect, the result of this study demonstrates that a portable energy harvesting device based on the contact electrification shows great potential as a strategy to harvest wind energy thrown away in daily life and use it widely in fields requiring high voltage.

Rotor Speed-based Droop of a Wind Generator in a Wind Power Plant for the Virtual Inertial Control

  • Lee, Jinsik;Kim, Jinho;Kim, Yeon-Hee;Chun, Yeong-Han;Lee, Sang Ho;Seok, Jul-Ki;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1021-1028
    • /
    • 2013
  • The frequency of a power system should be kept within limits to produce high-quality electricity. For a power system with a high penetration of wind generators (WGs), difficulties might arise in maintaining the frequency, because modern variable speed WGs operate based on the maximum power point tracking control scheme. On the other hand, the wind speed that arrives at a downstream WG is decreased after having passed one WG due to the wake effect. The rotor speed of each WG may be different from others. This paper proposes an algorithm for assigning the droop of each WG in a wind power plant (WPP) based on the rotor speed for the virtual inertial control considering the wake effect. It assumes that each WG in the WPP has two auxiliary loops for the virtual inertial control, i.e. the frequency deviation loop and the rate of change of frequency (ROCOF) loop. To release more kinetic energy, the proposed algorithm assigns the droop of each WG, which is the gain of the frequency deviation loop, depending on the rotor speed of each WG, while the gains for the ROCOF loop of all WGs are set to be equal. The performance of the algorithm is investigated for a model system with five synchronous generators and a WPP, which consists of 15 doubly-fed induction generators, by varying the wind direction as well as the wind speed. The results clearly indicate that the algorithm successfully reduces the frequency nadir as a WG with high wind speed releases more kinetic energy for the virtual inertial control. The algorithm might help maximize the contribution of the WPP to the frequency support.

Students' Responses on the Supporting or Conflicting Evidences on Thier Preconception (학생 선개념을 지지하는 증거와 반증하는 증거에 대한 학생의 반응)

  • Park, Jong-Won;Kim, Ik-Gyun;Lee, Moo;Kim, Myung-Whan
    • Journal of The Korean Association For Science Education
    • /
    • v.18 no.3
    • /
    • pp.283-296
    • /
    • 1998
  • This study was to identify middle school and college of education students' preconceptions about dielectric polarization and explore the students' reponses on the supporting or conflictual evidences on their preconceptions by letting them observe the demonstrations using electroscope, charged material, six conductor rods and six insulator rods. Letting students select the demonstrations to be observed by themselves, students' evidence selection types were classified as two : to select the evidences to testify their uncertain preconceptions, and to obtain the confirmation evidences about their preconceptions. And each evidence selection types, again, could be subclassified as three and two respectively. When students observed the conflictual observations, all accepted the observation itself. For supporting observational evidences, almost of all students showed the error of 'acceptance of antecedent' in the syllogism, that is, they did not required the succeeding supporting observations. Students' reponses on the conflictual observational evidences were classified as two: to reject the hard core of preconceptions, and to modify the students' auxiliary ideas related to the hard core with preserving the hard core. The first type reponses were, again, could be classified as three subtypes but, in all cases, students introduced new concept to explain the conflictual evidences. This responses indicated that Lakatosian rather than Popperian view is more acceptable to understand the students' reponses on the conflictual evidences. The second type reponses also were classified as three subtypes, and it was found that more middle school students than college education students were involved in this second type. That is, students who did not have perfect understanding of auxiliary ideas related with the hard core of preconceptions were more apt to change or modify theses auxiliary ideas rather than reject the hard core, this means that the quality of understanding of auxiliary ideas also take an important role in the change of hard core concept.

  • PDF