• Title/Summary/Keyword: induction motor(IM)

Search Result 161, Processing Time 0.028 seconds

A Study on The Digitalization of Induction Motor Vector Control System (유도기 백터 제어 시스템의 디지털화에 관한 연구)

  • Im, Dal-Ho;Kim, Hee-Jun;Oh, Won-Seok;Son, Young-Dae;Kim, Hyun-Gee
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.619-622
    • /
    • 1991
  • In this paper, a digitalization of Induction Motor Vector Control System is proposed, where all processings are executed by using a processor. In Vector Control System, where the motor voltages are controlled by using the motor voltage model, the variation of the rotor flux-interlinkage is very small however the deviation of the torque becomes large. Thus, in order to enhance the torque performance, voltage model based vector control scheme with minor current loops, which can eliminate the high frequency current harmonics is used.

  • PDF

The Core Technical Trends of TESLA EV(Electric Vehicle) Motors (테슬라(TESLA) 전기자동차 핵심 기술동향)

  • Bae, Jin-Yong;Kim, Yong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.414-422
    • /
    • 2017
  • This paper reviews the core technical trends of TESLA EV Motors. The TESLA EV Motors is explosively popular with a considerable recharging infrastructure, a wide 17-[inch] touch display, 417 [HP], and 378 [km] going distance. The object of this study analyzes the body appearance, motor and, battery cooling system, battery arrangement, battery management system, super charging station, power electronics, and induction motor.

Comparison of Traction Motor design and characteristics for battery driven hybrid tram (무가선 트램용 추진 전동기 설계 및 특성 비교)

  • Ham, Sang-Hwan;Kim, Kwang-Soo;Kim, Mi-Jung;Lee, Hyung-Woo;Lee, Ju
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1383-1388
    • /
    • 2010
  • The latest generation of tram is low-floor design, various nations in europe and japan have developed battery driven hybrid trams that combine battery and wiring. Battery driven tram system is achieved by contactless power supply system, thus system is needed high efficiency, high power and low weight traction motor for maximization of energy efficiency. Research from abroad is still in induction motor(IM) application, and it is not meet the efficiency and the power per unit volume in IPMSM. In this paper, we design compare IM and IPMSM to apply battery driven tram, and then compare these motors. To design the motor, we estimate the loading condition at first. Loading condition includes rolling resistance, air-drag resistance, and slope resistance. Based on the loading condition by estimation, we determine the power and compute rated voltage and rated current. In this paper, voltage is limited by battery voltage level. As a result, volume about IM is 1.98 times bigger than IPMSM under same condition. Even though IPMSM is bigger than IM in power density per volume, we consider more factors for actual application because there are demagnetization of permanent magnet in IPMSM and so on by external environment conditions.

  • PDF

A Novel Speed Estimation Method of Induction Motors Using Real-Time Adaptive Extended Kalman Filter

  • Zhang, Yanqing;Yin, Zhonggang;Li, Guoyin;Liu, Jing;Tong, Xiangqian
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.287-297
    • /
    • 2018
  • To improve the performance of sensorless induction motor (IM) drives, a novel speed estimation method based on the real-time adaptive extended Kalman filter (RAEKF) is proposed in this paper. In this algorithm, the fuzzy factor is introduced to tune the measurement covariance matrix online by the degree of mismatch between the actual innovation and the theoretical. Simultaneously, the fuzzy factor can be continuously self-tuned tuned by the fuzzy logic reasoning system based on Takagi-Sugeno (T-S) model. Therefore, the proposed method improves the model adaptability to the actual systems and the environmental variations, and reduces the speed estimation error. Furthermore, a simple exponential function based on the fuzzy theory is used to reduce the computational burden, and the real-time performance of the system is improved. The correctness and the effectiveness of the proposed method are verified by the simulation and experimental results.

MM PWM Scheme for High Performance and Harmonic Effects Minimization of VSI-IM Drive System (VSI-IM 구동시스템의 고동작 및 고주파영향 최소화를 위한 MM PWM 방식)

  • Min Soo Kim
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.1
    • /
    • pp.42-48
    • /
    • 1988
  • MM(multimode) PWM(pulse width modulation) Suitable for high performance and harmonic effects minimization of VSI (voltabge source invertetr)-IM (induction motor)drive system is proposed. The approximated optimal, suboptimal and optimal PWM are implemented in the low frequency range, while square wave operation is realized in the hibh frequency range. The pulse width Modulator is capable of generating control signals to a transistorized inverter operating at about 1KHz. All functions except digital comparison have been implemented in softyware making the scheme economical, flexible and reliable. Pulse width modulator is built and tested experimentally. In order to confirm the effectiveness and the reliability of the theoretical proposition, this scheme is applied to 1Hp, Three phase IM. As results, it is concluded that the scheme of MM PWM is superior to other conventional switching scheme through the discussions or analysis carried out on the items such as line-to-line voltage, current and spectrum of current harmonic components observed at the output terminal of inverter, noise level of motor.

  • PDF

The Direct Torque Control of Induction Motor for Dynamic Characteristics Improvement in a Low Speed Range (저속영역에서의 동특성 개선을 위한 유도전동기의 직접토크제어)

  • 조금배;최연옥;백형래
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.601-609
    • /
    • 2000
  • Direct torque control(DTC) of AC motor has the fast torque and flux dynamic responses even though it has very simple scheme to implement. However, DTC do not show good performance at low speed range with conventional open loop stator flux observer when stator resistance varied. Therefore, authors propose a new nonlinear stator flux observer in order to estimate the stator flux of induction motor at low speed and show its simulation results.

  • PDF

Model Predictive Control for Induction Motor Drives Fed by a Matrix Converter (매트릭스 컨버터로 구동되는 유도전동기의 직접토크제어를 위한 모델예측제어 기반의 SVM 기법)

  • Choi, Woo Jin;Lee, Eunsil;Song, Joong-Ho;Lee, Young-Il;Lee, Kyo-Beum
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.900-907
    • /
    • 2014
  • This paper proposes a MPC (Model Predictive Control) method for the torque and flux controls of induction motor. The proposed MPC method selects the optimized voltage vector for the matrix converter control using the predictive modeling equation of the induction motor and cost function. Hence, the reference voltage vector that minimizes the cost function of the torque and flux error within the control period is selected and applied to the actual system. As a result, it is possible to perform the torque and flux control of induction motor using only the MPC controller without a PI (Proportional-Integral) or hysteresis controller. Even though the proposed control algorithm is more complicated and has lots of computations compared with the conventional MPC, it can perform torque ripple reduction by synthesizing voltage vectors of various magnitude. This feature provides the reduction of amount of calculations and the improvement of the control performance through the adjustment of the number of the unit vectors n. The proposed control method is validated through the PSIM simulation.

Parameter Identification of Vector-Controlled Induction Motor using Skin Effect of Rotor Bars at Standstill (회전자 바의 표피효과를 이용한 벡터제어용 유도전동기의 정지형 상수추정)

  • Kwon, Young-Su;Moon, Sang-Ho;Lee, Jeong-Hum;Kwon, Byung-Ki;Choi, Chang-Ho;Seok, Jul-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.403-410
    • /
    • 2008
  • This paper suggests a standstill estimator to accurately identify induction motor (IM) parameters necessary for the vector control. A mathematical model that faithfully represents the general skin effect is introduced. Then, two exciting signals with a different frequency are sequentially injected to track the parameters based on the skin effect of the rotor bar. Little knowledge of the unknown motor allows the proposed methodology to employ a closed-loop control of an injected current, rather than open-loop voltage injection approaches. Subsequently, this control scheme proactively prevents electrical accidents resulting from an inadequate open-loop voltage injection. We develop a specialized offline commissioning test to compensate the phase delay resulting from the drive, which significantly affects the precision of the IM parameters. The effectiveness of the identification technique is validated by means of experiments performed on the three different IMs.

A Novel Technique for Tuning PI-Controllers in Induction Motor Drive Systems for Electric Vehicle Applications

  • Elwer Ayman Saber
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.322-329
    • /
    • 2006
  • In the last decade, the increasing restrictions imposed on the exhaust emissions from internal combustion engines and traffic limitations have increased the development of electrical propulsion systems for automotive applications. The goal of electrical and hybrid vehicles is the reduction of global emissions, which in turn leads to a decrease in fuel resource exploitation. This paper presents a novel approach for control of Induction Motors (IM) using the Particle Swarm Optimization (PSO) algorithm to optimize the parameters of the Proportional Integral Controller (PI-Controller). The overall system is simulated under various operating conditions. The use of PSO as an optimization algorithm makes the drive robust and insensitive to load variation with faster dynamic response and higher accuracy. The system is tested under variable operating conditions. The simulation results show a positive dynamic response with fast recovery time.

Basic Study of Radial Distributions of Electromagnetic Vibration and Noise in Three-Phase Squirrel-Cage Induction Motor under Load Conditions

  • Hirotsuka, Isao;Tsuboi, Kazuo;Takahashi, Yousuke
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.154-158
    • /
    • 2013
  • Reduction of electromagnetic vibration and acoustic noise from three-phase squirrel-cage induction motors (IMs) is very important, particularly from the standpoint of environmental considerations. Although the electromagnetic vibration of IMs has been studied for several years, the relationships between the radial distribution of the electromagnetic vibration and noise and the electromagnetic forces responsible for them have not yet been analyzed in sufficient detail. In the present study, we investigated this relationship experimentally for a small IM under different load conditions. Our results clearly show that the radial distributions of the dominant electromagnetic vibration and noise components match the mode shape of the dominant electromagnetic force producing these components.