• 제목/요약/키워드: induction generator

검색결과 415건 처리시간 0.025초

2MW급 풍력발전시스템용 이중여자 발전기 설계 (The Design of Doubly-fed Induction Generator for 2MW wind power system)

  • 조동혁;황상연;조성호;이인우;이승구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.257-260
    • /
    • 2006
  • This paper presents a design approach for wind power generator. Among several different generator systems, doubly-fed induction generator(DFIG) is selected for Hyosung 2MW wind turbine system from the view of cost and weight. The time step finite element method is applied to analyze the performance of DFIG, and design of experiment(DOE) is used as an optimization method.

  • PDF

퍼지제어를 이용한 풍력발전 시스템의 최대출력 제어 (Maximum Output Power Control of Wind Generation System Using Fuzzy Control)

  • 아보칼릴 아메드;김영신;이동춘
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권10호
    • /
    • pp.497-504
    • /
    • 2005
  • For maximum output power, wind turbines are usually controlled at the speed which is determined by the optimal tip-speed ratio. This method requires information of wind speed and the power conversion coefficient which is varied by the pitch angle control. In this paper, a new maximum output power control algorithm using fuzzy logic control is proposed, which doesn't need this information. Instead, fuzzy controllers use information of the generator speed and the output power. By fuzzy rules, the fuzzy controller produces a new generator reference speed which gives the maximum output power of the generator for variable wind speeds. The proposed algorithm has been implemented for the 3[kW] cage-type induction generator system at laboratory, of which results verified the effectiveness of the algorithm.

녹색교통망을 위한 진동력 발전 기초 실험연구 (A Basic Experimental Study on Vibration Power Generator for A Green Traffic Network)

  • 조병완;이윤성;김영지;박정훈
    • 대한토목학회논문집
    • /
    • 제29권6D호
    • /
    • pp.675-683
    • /
    • 2009
  • 본 논문에서는 도로와 철도에서 자동차와 열차주행시에 발생하는 진동에너지를 건축-토목 구조물에 활용 가능한 전기에너지로 변환하는 진동력 발전시스템 인프라 구축을 위한 기초 개념에 대해 연구하였다. 본 연구에서는 자기유도기술을 활용하여 진동에너지를 전기에너지로 변환하는 진동력 발전장치를 제안하고, 자기유도기술의 기본 원리 및 진동력 발전장치의 동적특성에 대해 설명하였다. 마지막으로 외력과 진동속도에 따라 진동력 발전장치에서 발생하는 기전력의 세기와의 상관관계를 분석하기 위해 다양한 변수를 두고 실내실험을 수행하였고, 이러한 실험결과를 토대로 시험용 진동력 발전장치의 적용성과 효용성을 분석하여, 최대 가용 전력을 획득하기 위한 진동력 발전시스템의 최적설계에 대한 기초 자료를 확보하였다.

Performance Limits of Three-Phase Self-Excited Induction Generator (SEIG) as a Stand Alone DER

  • Slimene, Marwa Ben;Khlifi, Mohamed Arbi
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.145-150
    • /
    • 2017
  • This paper present a unified method of steady state performance analysis and limits characteristics of an autonomous three-phase self-excited induction generator (SEIG) driven by a wind turbine under different types of loads and speeds. The proposed method is based on a new mathematical function to solve for the real and imaginary components of the complex equation of the mathematical model. Performances limits, regulation and characteristics of different configurations will be thoroughly examined and compared. The proposed system will be modeled and simulated and the performance limits characteristics will be compared with variable speed and variable capacity.

AC and DC Applications of Induction Generator Excited by Static VAR Compensator

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제4권3호
    • /
    • pp.169-179
    • /
    • 2004
  • This paper presents the steady-state analysis of the three-phase self-excited induction generator (SEIG). The three-phase SEIG with a squirrel cage rotor is driven by a variable-speed prime mover (VSPM) or a constant-speed prime mover (CSPM) such as a wind turbine or a micro gas turbine. Furthermore, a PI closed-loop feedback voltage regulation scheme of the three-phase SEIG driven by a VSPM on the basis of the static VAR compensator (SVC) is designed and evaluated for the stand-alone AC and DC power applications. The simulation and experimental results prove the practical effectiveness of the additional SVC with the PI controller-based feedback loop in terms of its fast responses and high performances

A Novel Wound Rotor Type for Brushless Doubly Fed Induction Generator

  • Chen, Xin;Wang, Xuefan
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.595-602
    • /
    • 2015
  • The rotor configuration of the brushless doubly fed induction generator (BDFIG) plays an important role in its performance. In order to make the magnetomotive force (MMF) space vector in one set rotor windings to couple both magnetic fields with different pole-pair and have low resistance and inductance, this paper presents a novel wound rotor type for BDFIG with low space harmonic contents. In accordance with the principles of slot MMF harmonics and unequal element coils, this novel rotor winding is designed to be composed of three-layer unequal-pitch unequal-turn coils. The optimal design process and rules are given in detail with an example. The performance of a 700kW 2/4 pole-pair prototype with the proposed wound rotor is analyzed by the finite element simulation and experimental test, which are also carried out to verify the effectiveness of the proposed wound rotor configuration.

이차여자시스템에 의한 파력발전시스템의 출력제어 (The Output Power Control in the Sea-Wave Input Generation System by the Secondary Excited System)

  • 김문환
    • 한국정보통신학회논문지
    • /
    • 제7권5호
    • /
    • pp.1013-1018
    • /
    • 2003
  • 본 논문은 이차여자 유도발전기시스템의 파력발전시스템에의 적용에 관한 연구내용을 요약한다. 불규칙적인 파력 입력에 따라 변화하는 발전기의 출력을 슬립주파수에 맞추어 컴퓨터로 이차전류를 제어하여 출력전압과 출력전류를 안정화시키고자 하였다. 본 논문에서 제안한 방법을 확인하기 위하여 실험실 레벨의 파력 시뮬레이터를 제작한 후 이차여자 유도발전기를 구동하였다. 파력과 같은 불규칙입력 발전시스템에 대한 이차여자 유도발전 시스템의 유효성을 실험적으로 확인하였다.

Small Signal Stability Analysis of Doubly Fed Induction Generator including SDBR

  • Shawon, Mohammad Hasanuzzaman;Al-Durra, Ahmed;Caruana, Cedric;Muyeen, S.M.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권1호
    • /
    • pp.31-39
    • /
    • 2013
  • This paper presents small signal stability analysis of a doubly fed induction generator (DFIG) based wind farm including series dynamic braking resistor (SDBR) connected at the stator side. A detailed mathematical model of wind turbine, DFIG machine and converters and SDBR is presented in this paper to derive the complete dynamic equations of the studied system. Small signal stability of this system is carried out by modal and sensitivity analysis, participation factors and eigenvalue analysis. Finally, this paper presents an analysis of the dynamic behavior of DFIG based wind farm under voltage dip condition with and without SDBR.

Static VAR Compensator-based Feedback Control Implementation for Self-Excited Induction Generator Terminal Voltage Regulation Driven by Variable-Speed Prime Mover

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제4권2호
    • /
    • pp.65-76
    • /
    • 2004
  • In this paper, the steady-state analysis of the three-phase self-excited induction generator (SEIG) driven by a variable-speed prime mover (VSPM) such as a wind turbine is presented. The steady-state torque-speed characteristics of the VSPM are considered with the three-phase SEIG equivalent circuit for evaluating the operating performances due to the inductive load variations. Furthermore, a PI closed-loop feedback voltage regulation scheme based on the static VAR compensator (SVC) for the three-phase SEIG driven by the VSPM is designed and considered for the wind power generation conditioner. The simulation and experimental results prove the practical effectiveness of the additional SVC with the PI controller-based feedback loop in terms of fast response and high performances.

Effective Algorithm in Steady-State Analysis for Variable-Speed and Constant-Speed Wind Turbine Coupled Three-Phase Self-Excited Induction Generator

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제3B권3호
    • /
    • pp.139-146
    • /
    • 2003
  • In this paper, the steady-state operating performance analysis for the three-phase squirrel cage rotor self-excited induction generator (SEIG) driven by a variable-speed prime mover (VSPM) in addition to a constant-speed prime mover (CSPM) is presented on the basis of an effective algorithm based on its frequency-domain equivalent circuit. The operating characteristics of the three-phase SEIG coupled by a VSPM and/or a CSPM are evaluated on line processing under the condition of the electrical passive load parameters variations with simple and efficient computation processing procedure in unregulated voltage control loop scheme. A three-phase SEIG prototype setup with a VSPM as well as a CSPM is implemented for the small-scale clean renewable and alternative energy utilizations. The experimental operating characteristic results are illustrated and give good agreements with the simulation ones.