• Title/Summary/Keyword: inducible promoter

Search Result 193, Processing Time 0.02 seconds

Heterologous Gene Expression System Using the Cold-Inducible CnAFP Promoter in Chlamydomonas reinhardtii

  • Kim, Minjae;Kim, Jongrae;Kim, Sanghee;Jin, EonSeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1777-1784
    • /
    • 2020
  • To increase the availability of microalgae as producers of valuable compounds, it is necessary to develop novel systems for gene expression regulation. Among the diverse expression systems available in microalgae, none are designed to induce expression by low temperature. In this study, we explored a cold-inducible system using the antifreeze protein (AFP) promoter from a polar diatom, Chaetoceros neogracile. A vector containing the CnAFP promoter (pCnAFP) was generated to regulate nuclear gene expression, and reporter genes (Gaussia luciferase (GLuc) and mVenus fluorescent protein (mVenus)) were successfully expressed in the model microalga, Chlamydomonas reinhardtii. In particular, under the control of pCnAFP, the expression of these genes was increased at low temperature, unlike pAR1, a promoter that is widely used for gene expression in C. reinhardtii. Promoter truncation assays showed that cold inducibility was still present even when pCnAFP was shortened to 600 bp, indicating the presence of a low-temperature response element between -600 and -477 bp. Our results show the availability of new heterologous gene expression systems with cold-inducible promoters and the possibility to find novel low-temperature response factors in microalgae. Through further improvement, this cold-inducible promoter could be used to develop more efficient expression tools.

Analysis of Heat Shock Promoters in Hansenula polymorpha: The TPS1 Promoter, a Novel Element for Heterologous Gene Expression

  • Amuel, Carsten;Gellissen, Gerd;Cor;Suckow, Manfred
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.4
    • /
    • pp.247-252
    • /
    • 2000
  • The strength and regulatory characteristics of the heat-inducible HSA1, HSA2 and TPS1 promoters were compared with those of the well-established, carbon source-regulated FMD promoter in a Hansenula polymorpha-based host system in vivo. In addition, the Saccharomyces cerevisiae-derived ADH1 promoter was analysed. While ADH1 promoter showed to be of poor activity in the foreign host, the strength of the heat shock TPS1 promoter was found to exceed that of the FMD promoter, which at present is considered to be the strongest promoter for driving heterologous gene expression in H. polymorpha.

  • PDF

Loss of Specific Sequences in a Natural Variant of Potato Proteinase Inhibitor II Gene Results in a Loss of Wound-Inducible Gene Expression (감자의 단백질 분해효소 억제제 II 유전자의 특별한 염기서열의 자연적 제거로 인한 상처 유발성 발현의 소실)

  • Thornburg, Robert W.;Park, Sang-Gyu
    • Applied Biological Chemistry
    • /
    • v.39 no.2
    • /
    • pp.104-111
    • /
    • 1996
  • We have isolated several proteinase inhibitor II genes pin2 from a Russet Burbank potato DNA library. One of these, pin2T was subcloned and a 1.8 kb Xbal/Nsil insert was sequenced. This fragment contained the complete Inhibitor II gene including 965 Up of flanking DNA upstream from the gene and 200 bp of flanking DNA downstream from the gene. The open reading frame encodes a protein that is similar to other reported proteinase Inhibitor II proteins. The DNA sequence of the 5' flanking region of pin2T from -714 to +1 is highly homologous (91% identity) with that of the previously isolated wound-inducible pin2K. There are, however, four small deletions in the pin2T promoter which are located at -221 to -200, -263 to -254, -523 to -426 and -759 to -708 relative to the transcription start site of the wound-inducible pin2K. Three of these deletions map to a portion of the promoter that controls the wound-inducibility of the proteinase inhibitor genes. Chimeric genes containing the promoter of the pin2T gene linked with the both CAT and GUS were constructed and transfered into tobacco plants. Analysis of these plants indicated that pin2T is not a wound-inducible gene but is expressed at low levels. Thus, wound-inducibility is lost with the concomitant natural deletion of three small regions of the promoter. Comparision of the sequences deleted in pin2T relative to the pin2K with Genebank sequences indicates that the deleted sequences contain a motif (consensus 5'-AGTAAA-3') that is found in many other wound-inducible genes but not easily found in the published promoter sequences of other plant genes. Nuclear proteins from unwounded and wounded potato leaves were bound to the proximal promoter region, downstream of the 5'-AGTAAA-3', of pin2T. The comparison of the pin2T gone with the pin2K gene indicates that the natural internal promoter deletions are likely responsible for loss of the wound-inducible phenotype in the pin2T gene.

  • PDF

A Novel Oxidative Stress-inducible Peroxidase Promoter and Its Applications to Production of Pharmaceutical Proteins in Transgenic Cell Cultures

  • Lee, Ok-Sun;Park, Sun-Mi;Kwon, Suk-Yoon;Lee, Haeng-Soon;Kim, Kee-Yeun;Kim, Jae-Whune;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.143-150
    • /
    • 2002
  • A strong oxidative stress-inducible peroxidase promoter (referred to as SWPA2 promoter) was cloned from tell cultures of sweetpotato (Ipomoea batatas) and characterized in transgenic tobacco cultured cells in terms of biotechnological applications. Employing a transient expression assay in tobacco protoplasts, with five different 5'-deletion mutants of the SWPA2 promoter fused to the $\beta$-glucuronidase (GUS) reporter gene, the 1314 bp deletion mutant showed approximately 30 times higher GUS expression than the CaMV 35S promoter. The expression of GUS activity in suspension cultures of transgenic cells derived from transgenic tobacco leaves containing the -1314 bp SWPA2 promoter-GUS fusion was strongly expressed following 15 days of subculture compared to other deletion mutants, suggesting that the 1314 bp SWPA2 promoter will be biotechnologically useful for the development of transgenic cell lines engineered to produce key pharmaceutical proteins. In this respect, we developed transgenic cell lines such as tobacco (Nicotiana tabacum L. BY-2), ginseng (Panax ginseng) and Siberian ginseng (Acanthopanax senticosus) using a SWPA2 promoter to produce a human lactoferrin (hLf) and characterized the hLf production in cultured cells. The hLf production monitored by ELISA analysis in transgenic BY-2 cells was directly increased proportional to cell growth and reached a maximal level (up to 4.3% of total soluble protein) at the stationary phase in suspension cultures. The SWPA2 promoter should result in higher productivity and increased applications of plant cultured cells for the production of high-value recombinant proteins.

Isolation and Characterization of Paraquat-inducible Promoters from Escherichia coli

  • Lee, Joon-Hee;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.277-283
    • /
    • 1997
  • Promoters inducible by paraquat, a superocide-generating agent, were isolated from Escherichia coli using a promoter-probing plasmid pRS415 with promoterless lacA gene. Twenty one promoters induced by paraquat were selected and further characterized. From sequence analysis, thirteen of the promoters were mapped to their specific loci on the Escherichia coli chromosome. Several promoters were mapped to the upstream of known genes such as usgl, katG, and mglB, whose relationships with superoxide response have not been previously reported. Other promoters were mapped to the upstream region of unknown open reading frames. Downstream of HC 96 promoter are uncharacterized ORFs whose sequences are homologous to ABC-transporter subunits. Downstream of HC84 promoter is an ORF encoding a transcriptional regulator-like protein, which contains a LysR family-specific HTH (helix-turn-helix) DNA bindign motif. We investigated whether these promoters belong to the soxRS regulon. All promoters except HC96 were found to belong to the soxRS regulon. The HC96 promoter was significantly induced by paraquat in the soxRS deletion mutant strain. The basal transcription level of three promoters (HE43, HC71, HD94) significantly increased at the stationary phase, implying that they are regulated by RpoS. However, paraquat inducibility of all promoters disappeared in the stationary phase, suggesting that SoxRS regulatory system is active only in rapidly growing cells.

  • PDF

Production of Enantiomerically Pure [R]-3-Hydroxybutyric acid by Metabolically Engineered Escherichia coli with Inducible System (Inducible System을 이용한 재조합 대장균으로부터 광학적으로 순수한 [R]-3-Hydroxybutyric acid 생산)

  • 이영;최종일;이상엽
    • KSBB Journal
    • /
    • v.19 no.4
    • /
    • pp.327-330
    • /
    • 2004
  • An inducible expression system of poly[(R)-3-hydroxybutyrate] (PHB) depolymerization was established in metabolically engineered Escherichia coli with the PHB biosynthesis genes. The Ralstonia eutropha PHB depolymerase gene was cloned in a vector system containing the PHB biosynthesis genes and expressed under inducible promoter. Recombinant E. coli harboring the PHB biosynthesis genes and depolymerase gene was first cultured for the accumulation of PHB, and then the depolymerase was expressed resulting in the degradation of accumulated PHB into (R)-3-hydroxybutyric acid (R3HB). R3HB could be produced with the concentration of 7.6 g/L in flask culture. Two different PHB biosynthesis genes from Alcaligenes latus and R. eutropha were compared for the production of R3HB. This strategy can be used for the production of enantiomerically pure (R)-hydroxycarboxylic acids with high concentration.

Optimization of Staphylokinase Production in Bacillus subtilis Using Inducible and Constitutive Promoters

  • Kim, June-Hyung;Wong, Sui-Lam;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.3
    • /
    • pp.167-172
    • /
    • 2001
  • Staphylokinase (SAK) was produced in B. subtilis using two different promoter systems, i.e. the P43 and sacB promoters. To maximize SAK expression in B. subtilis, fermentation control strategies for each promoter were examined. SAK, under P43, a vegetative promoter transcribed mainly by $\sigma$(sup)B containing RNA polymerase, was overexpressed at low dissolved oxygen (D.O.) levels, suggesting that the sigB operon is somewhat affected by the energy charge of the cells. The expression of SAK at the 10% D.O. level was three times higher than that at the 50% D.O. level. In the case of sacB, a sucrose-inducible promoter, sucrose feeding was used to control the induction period and induction strength. Since sucrose is hydrolyzed by two sucrose hydrolyzing enzymes in the cell and culture broth, the control strategy was based on replenishing the loss of sucrose in the culture. With continuous feeding of sucrose, WB700 (pSAKBQ), which contains the SAK gene under sacB promoter, yielded ca. 35% more SAK than the batch culture. These results present efficient promoter-dependent control strategies in B. subtilis host system for foreign protein expression.

  • PDF

Construction of Improved Tetracycline-Inducible Expression System for the Effective Regulation of Transgene Expression (외래 유전자의 효율적인 발현 조절을 위한 개선된 Tetracycline-Inducible Expression System의 구축)

  • Koo, Bon-Chul;Kwon, Mo-Sun;Kim, Teo-An
    • Reproductive and Developmental Biology
    • /
    • v.33 no.1
    • /
    • pp.63-69
    • /
    • 2009
  • In this study we tried to construct a more efficient tetracycline-inducible gene expression system by replacing previous key elements with more advance ones. At the beginning, we substituted PGK (phophoglycerate kinase) promoter for CMV (cytomegalovirus) promoter to control "$rtTA2^sM2$" which has been known for high induction efficiency in response to tetracycline. With this modification, expression of the EGFP marker gene under the induction condition was significantly increased. Next, we replaced "TRE" fragment with a modified version named "TRE-tighf" which has been reported to have higher affinity and specificity to the transactivator by minor base change of the "TRE" DNA fragment sequence. Use of "TRE-tighf" instead of "TRE" resulted in more than 10 fold increment in terms of induction efficiency and significant decrement of background expression in non-inducible condition. By combining PGK promoter and "TRE-tight" fragment, we could upgrade previous tetracycline-inducible system to show more stringent turn on/off gene switch ability and stronger expression of the gene of our interest. Use of this newly developed system must be very helpful to the studies of gene expression, especially to the transgenic animal study in which non-controllable constitutive expression of the transgene has been one of the urgent problems to be solved.

Isolation and Characterization of a Salt Inducible Promoter from Chlorella vulgaris PKVL7422

  • Min-Jeong Kim;Su-Hyun Kim;Najib Abdellaoui;Tae-Jin Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.955-963
    • /
    • 2023
  • Chlorella is a eukaryotic organism that can be used as an industrial host to produce recombinant proteins. In this study, a salt-inducible promoter (SIP) was isolated from the freshwater species Chlorella vulgaris PKVL7422 from the screening of genes that were upregulated after salt treatment. Several cis-acting elements, including stress response elements, were identified in the isolated SIP. Moreover, the Gaussia luciferase gene was cloned after the SIP and transformed into C. vulgaris to test the inducibility of this promoter. Reexamination of transcriptome of C. vulgaris revealed that genes involved in the synthesis of methyl jasmonic acid (MeJA), gibberellin (GA), and abscisic acid (ABA) were upregulated when C. vulgaris was treated with salt. Furthermore, the expression level of recombinant luciferase increased when the transformed C. vulgaris was treated with salt and MeJA, GA, and ABA. This study represents the first report of the C. vulgaris SIP and highlights how transformed microalgae could be used for robust expression of recombinant proteins.

Tissue Specific Expression of Wound-Inducible RCaM-2 Promoter in Transgenic Tobacco Plants (상처에 의해서 유도되는 벼 calmodulin promoter의 transgenic 담배에서조직 특이적 발현)

  • Choi Young Ju
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.176-181
    • /
    • 2005
  • To study calmodulin (CaM) gene expression and its regulation, rice CaM promoter (RCaM-2) was isolated and fused to $\beta-glucuronidase$ (GUS), reporter gene. X-Glue staining patterns revealed that GUS localization is high in meristemic tissues such as the stem apex, stolen tip, and vascular regions. GUS staining in the transverse sections of stem and petiole was restricted to the inside of the vascular system, and cortex and epidermis located outside of the vascular system usually did not show GUS staining even a plant that expressed strong activity. GUS activity was found to be tissue specific expressed and exhibited a dramatic transient increase in response to wounding. These results suggest that the 5'-flanking region of RCaM gene regulates wound-inducible expression.