• 제목/요약/키워드: induced ground

Search Result 916, Processing Time 0.533 seconds

Vibrational Relaxation and Bond Dissociation in Methylpyrazine on Collision with N2 and O2

  • Young-Jin Yu;Sang Kwon Lee;Jongbaik Ree
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.6
    • /
    • pp.407-414
    • /
    • 2023
  • The present study uses quasi-classical trajectory procedures to examine the vibrational relaxation and dissociation of the methyl and ring C-H bonds in excited methylpyrazine (MP) during collision with either N2 or O2. The energy-loss (-ΔE) of the excited MP is calculated as the total vibrational energy (ET) of MP is increased in the range of 5,000 to 40,000cm-1. The results indicate that the collision-induced vibrational relaxation of MP is not large, increasing gradually with increasing ET between 5,000 and 30,000 cm-1, but then decreasing with the further increase in ET. In both N2 and O2 collisions, the vibrational relaxation of MP occurs mainly via the vibration-to-translation (V→T) and vibration-to-vibration (V→V) energy transfer pathways, while the vibration-to-rotation (V→R) energy transfer pathway is negligible. In both collision systems, the V→T transfer shows a similar pattern and amount of energy loss in the ET range of 5,000 to 40,000cm-1, whereas the pattern and amount of energy transfer via the V→V pathway differs significantly between two collision systems. The collision-induced dissociation of the C-Hmethyl or C-Hring bond occurs when highly excited MP (65,000-72,000 cm-1) interacts with the ground-state N2 or O2. Here, the dissociation probability is low (10-4-10-1), but increases exponentially with increasing vibrational excitation. This can be interpreted as the intermolecular interaction below ET = 71,000 cm-1. By contrast, the bond dissociation above ET = 71,000 cm-1 is due to the intramolecular energy flow between the excited C-H bonds. The probability of C-Hmethyl dissociation is higher than that of C-Hring dissociation.

A Study on Pullout-Resistance Increase in Soil Nailing due to Pressurized Grouting (가압 그라우팅 쏘일네일링의 인발저항력 증가 원인에 관한 연구)

  • Jeong, Kyeong-Han;Park, Sung-Won;Choi, Hang-Seok;Lee, Chung-Won;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.101-114
    • /
    • 2008
  • Pressurized grouting is a common technique in geotechnical engineering applications to increase the stiffness and strength of the ground mass and to fill boreholes or void space in a tunnel lining and so on. Recently, the pressurized grouting has been applied to a soil-nailing system which is widely used to improve slope stability. Because interaction between pressurized grouting paste and adjacent ground mass is complicated and difficult to analyze, the soil-nailing design has been empirically performed in most geotechnical applications. The purpose of this study is to analyze the ground behavior induced by pressurized grouting paste with the aid of laboratory model tests. The laboratory tests are carried out for four kinds of granitic residual soils. When injecting pressure is applied to grout, the pressure measured in the adjacent ground initially increases for a while, which behaves in the way of the membrane model. With the lapse of time, the pressure in the adjacent ground decreases down to a value of residual stress because a portion of water in the grouting paste seeps into the adjacent ground. The seepage can be indicated by the fact that the ratio of water/cement in the grouting paste has decreased from a initial value of 50% to around 30% during the test. The reduction of the W/C ratio should cause to harden the grouting paste and increase the stiffness of it, which restricts the rebound of out-moved ground into the original position, and thus increase the in-situ stress by approximately 20% of the injecting pressures. The measured radial deformation of the ground under pressure is in good agreement with the expansion of a cylindrical cavity estimated by the cavity expansion theory. In-situ test revealed that the pullout resistance of a soil nailing with pressurized grouting is about 36% larger than that with regular grouting, caused by grout radius increase, residual stress effect, and/or roughness increase.

A Study on Performance of Indirect-contact Driven-right-leg Ground in Indirect-contact ECG Measurement (간접접촉 심전도 측정에서의 간접접촉 오른발 구동 접지 성능에 대한 연구)

  • Lim, Yong-Gyu;Kim, Ko-Keun;Park, Kwang-Suk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.4
    • /
    • pp.280-287
    • /
    • 2008
  • For the reduction of common-mode noise level in Indirect-contact ECG (IDC-ECG) measurement a driven-right-leg grounding method was a lied to the IDC-ECG. Because the IDC-ECG does not require any direct contact between the electrodes and the human skin. it is adequate for un-constraining long-term ECG measurement at home and its various applications are now under development. However, larger 60 Hz noise induced by power line a ears in IDC-BCG than in conventional ECG, that is a restriction of IDC-ECG a application. In this study, the driven-right-leg ground which has been used in conventional direct-contact ECG, was adapted to the IDC-ECG measurement by feedback of the inversion of amplified common-mode noise to the body through the conductive fertile laid on the chair seat By this study, indirect-contact driven-right-leg ground was developed and it was shown to work stably. It was shown that the level of 60Hz power line noise was reduced to about -40 dB when the driven-right-leg gain was 1000. This study shows that we can extend the upper limit of the frequency band of IDC-ECG to 100Hz from 30Hz which is conventional upper limit in IDC-ECG, and we can raise the ground impedance between the body and conductive textile. So it is expected that the application area of the IDC-ECG will be extended by the results of this study.

  • PDF

Experimental Study of Freshwater Discharge and Saltwater Intrusion Control in Coastal Aquifer (해안대수층에서 담수-염수 경계면 변화에 따른 최대담수양수량과 염수침투제어에 대한 실험적 연구)

  • Suh, Seong-Kook;Oh, Chang-Moo;Kim, Won-Il;Ho, Jung-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.159-168
    • /
    • 2010
  • This study investigates the relationships between the maximum freshwater pumping discharge and hydraulic properties of coastal aquifer using a laboratory model. The experiment performed the fresh pumping test in various locations near the saltwedge induced by saltwater intrusion to freshwater over aquifer characteristics of hydraulic conductivity, salinity, and ground surface slope. Saltwater pumping also tested to protest saltwater intrusion to the excessively discharging freshwater well. The maximum freshwater discharges were achieved, and then the optimum saltwater discharges were measured. It is found that greater hydraulic conductivity and ground surface slope produced greater the maximum freshwater pumping discharge. Salinity gave less impact on the pumping discharge relatively. Higher freshwater discharge was found at higher hydraulic conductivity and steeper ground surface slope. The optimum saltwater discharge required 14% more pumping rate than the maximum freshwater discharge to keep saltwater intrusion to the freshwater pumping well. Pumping well located closer to salt-wedge profile promoted less freshwater pumping discharge. Therefore, pumping well location, hydraulic conductivity, ground surface slope, and salinity should be taken into account in freshwater pumping in coastal aquifer.

Groundwater inflow rate estimation considering excavation-induced permeability reduction in the vicinity of a tunnel (터널 굴착으로 인한 터널인접 절리암반 투수계수 감소를 고려한 터널 내 지하수 유입량 산정방법)

  • Moon, Joon-Shik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.333-344
    • /
    • 2013
  • This paper discussed about the effect of permeability reduction of the jointed rock mass in the vicinity of a tunnel which is one of the reasons making large difference between the estimated ground-water inflow rate and the measured value. Current practice assumes that the jointed rock mass around a tunnel is a homogeneous, isotropic porous medium with constant permeability. However, in actual condition the permeability of a jointed rock mass varies with the change of effective stress condition around a tunnel, and in turn effective stress condition is affected by the ground water flow in the jointed rock mass around the tunnel. In short time after tunnel excavation, large increase of effective tangential stress around a tunnel due to stress concentration and pore-water pressure drop, and consequently large joint closure followed by significant permeability reduction of jointed rock mass in the vicinity of a tunnel takes place. A significant pore-water pressure drop takes place across this ring zone in the vicinity of a tunnel, and the actual pore-water pressure distribution around a tunnel shows large difference from the value estimated by an analytical solution assuming the jointed rock mass around the tunnel as a homogeneous, isotropic medium. This paper presents the analytical solution estimating pore-water pressure distribution and ground-water inflow rate into a tunnel based on the concept of hydro-mechanically coupled behavior of a jointed rock mass and the solution is verified by numerical analysis.

Model Test Study on the Reinforcing Effect of Inclined System Bolting (경사볼트의 보강효과에 대한 모형시험 연구)

  • Lee, Jea-Dug;Kim, Byoung-Il;Piao, Ming-Shan;Yoo, Wan-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5C
    • /
    • pp.231-238
    • /
    • 2012
  • The rockbolt functions as a main support, which restricts enlargement of the plasticity area and increases stability in the original ground around tunnels, and prevents a second deformation of an excavated surface by supplementing vulnerability arising from opening of the excavated surface. System bolting is generally applied if ground conditions are bad. System bolting is generally installed perpendicular to the excavation direction in every span. If a place is narrow, or it is difficult to insert bolts due to construction conditions, it may be connected and used with short bolts, or installed obliquely. In this study, laboratory model tests were performed to analyze the effect of the ground being reinforced by inclined bolts, based on a bending theory that assumes that the reinforced ground is a simple beam. In all test cases, deflections and vertical earth pressures induced by overburden soil pressure were measured. Total of 99 model tests were carried out, by changing the installation angle of bolts, lateral and longitudinal distance of bolts, and soil height. The model test results indicated that when the installation angle of bolts was less than $75^{\circ}$, deflections of model beams tended to increase rapidly. Also, the relaxed load that was calculated by earth pressure was rapidly increased when the installation angle of bolts was less than $75^{\circ}$. However, the optimum installation angle of inclined bolts was judged to be in the range of $90^{\circ}{\sim}75^{\circ}$. Also, as might be expected, the reinforcement effect of bolts was increased when the longitudinal and lateral distance of bolts was decreased.

A numerical study of pillar reinforcing effect in underground cavern underneath existing structures (지하공간하부 지하저류공동에서의 필라 보강효과에 관한 수치해석적 연구)

  • Seo, Hyung-Joon;Lee, Kang-Hyun;Han, Shin-In;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.5
    • /
    • pp.453-467
    • /
    • 2012
  • Usage of underground space is increasing at metropolitan city. More than 90% of flood damages have occurred at downtown of metropolitan cities. In order to prevent and/or minimize the flood-induced damage, an underground rainwater detention cavern was proposed to be built underneath existing structures. As for underground caverns to be built for flood control, multi-caverns will be mostly adopted rather than one giant cavern because of stability problem. Because of the stress concentration occurring in the pillars between two adjacent caverns, the pillar-stability is the Achilles' heel in multi-caverns. So, a new pillar-reinforcing technology was proposed in this paper for securing the pillar-stability. In the new pillar-reinforcing technology, reinforced materials which are composed of a steel bar and PC strands are used by applying pressurized grouting, and then, by applying the pre-stress to the PC strands and anchor body. Therefore, this new technology has an advantage of utilizing most of the strength that the in-situ ground can exert, and not much relying on the pre-cast concrete structure. The main effect of the pressurized grouting is the increase of the ground strength and more importantly the decrease of stress concentration in the pillar; that of the pre-stress is the increase of the ground strength due to the increase of the internal pressure. In this paper, ground reinforcing effects were verified the stress change in pillar is obtained by numerical analysis at each construction stage. From these results, the effects of pressurized grouting and pre-stress are verified.

A Study on the Ground Improvement Effect with Grouting in Backside of Retaining Wall (흙막이 벽체 배면 그라우팅 시 지반보강 효과에 관한 연구)

  • Chu, Ickchan;Byun, Yoseph;Baek, Seungin;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.77-83
    • /
    • 2012
  • Recently, excavations using propped walls were popularized in downtown due to reduced settlement of nearby structures. These excavations is induced strain to propped walls or settlement in near ground. In this study, the ground reinforcing effect was proven using NDS, which is an inorganic injection material. Injection tests were performed to compute optimum injection pressure and volume. Next, calibration chamber tests were performed by using computed injection pressure and volume, and wall behaviour was examined for overburden pressures of 50kPa and 150kPa. Ground reinforcing effect was shown when the material behind the propped wall was grouted. From test results, optimum injection pressure was 350kPa and the optimum volume was 10L considering economics. Calibration chamber test results show that after the material was grouted, the maximum settlement was reduced to 19% of the non-grouted condition. For overburden pressures of 50kPa and 150kPa behind the wall, the settlement of the wall increased by 58% and 57% when compared to the case of no overburden pressure.

Dynamic Numerical Modeling of Subsea Railway Tunnel Based on Geotechnical Conditions and Seismic Waves (지반조건과 지진파를 고려한 해저철도 터널의 동적 수치 모델링)

  • Kwak, Chang-Won;Yoo, Mintaek
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.69-86
    • /
    • 2022
  • The railway is widely used to transport passengers and freight due to its punctuality and large transport capacity. The recent remarkable development in construction technology enables various subsea railway tunnels for continent-continent or continent-island connectivity. In Korea, design and construction experience is primarily based on the successful completion of the Boryeong subsea tunnel (2021) and the Gadeok subsea tunnel (2010). However, frequent earthquakes with diverse magnitudes, globally induced and continuously increased the awareness of seismic risks and the frequency of domestic earthquakes. The effect of an earthquake on the subsea tunnel is very complicated. However, ground conditions and seismic waves are considered the main factors. This study simulated four ground types of 3-dimensional numerical models, such as soil, rock, composite, and fractured zone, to analyze the effect of ground type and seismic wave. A virtual subsea railway shield tunnel considering external water pressure was modeled. Further, three different seismic waves with long-term, short-term, and both periods were studied. The dynamic analyses by finite difference method were performed to investigate the displacement and stress characteristics. Consequently, the long-term period wave exhibited a predominant lateral displacement response in soil and the short-term period wave in rock. The artificial wave, which had both periodic characteristics, demonstrated predominant in the fractured zone. The effect of an earthquake is more noticeable in the stress of the tunnel segment than in displacement because of confining effect of ground and structural elements in the shield tunnel. 

A Study on the Conventional Liquefaction Analysis and Application to Korean Liquefaction Hazard Zones (기존의 액상화 평가기법 밀 그 적용성에 관한 연구)

  • 박인준;신윤섭;최재순;김수일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.431-438
    • /
    • 1999
  • An assessment of liquefaction potential is made in principle by comparing the shear stress induced by earthquake to the liquefaction strength of the soil. In this study, a modified method based on Seed and Idriss theory is developed for evaluating liquefaction potential. The shear stress in the ground can be evaluated with seismic response analysis and the liquefaction strength of the soil can be investigated by using cyclic triaxial tests. The cyclic triaxial tests are conducted in two different conditions in order to investigate the factors affecting liquefaction strength such as cyclic shear stress amplitude and relative density. And performance of the modified method in practical examples is demonstrated by applying it to liquefaction analysis of artificial zones with dimensions and material properties similar to those in a typical field. From the result, the modified method for assessing liquefaction potential can successfully evaluate the safety factor under moderate magnitude(M=6.5) of earthquake.

  • PDF