• Title/Summary/Keyword: induced electromotive

Search Result 30, Processing Time 0.02 seconds

Detent Force Reduction of a Tubular Linear Generator Using an Axial Stepped Permanent Magnet Structure

  • Eid Ahmad M.;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.290-297
    • /
    • 2006
  • Various methods have been discussed to reduce detent force in a tubular permanent magnet type linear single phase AC generator. In particular, the proposed methods depend on variations of the permanent magnet construction. These methods include two approaches in the form of sloped magnets, and conical magnets in addition to the conventional method of optimizing the magnet length. The undesired detent force ripples were calculated by a two dimensional Finite Element Method (FEM). Moreover, the generated electromotive force in the stator coils was calculated for each configuration of the permanent magnet. The experimental results agreed well with those obtained from the FEM-based simulations. Sufficient reduction in the detent force was achieved over the range of 40% while the root mean square of the output voltage was maintained. It was found that sloping the permanent magnet decreased the detent force and at the same time increased the generated rms voltage of the AC generator. The performance of the designed linear AC generator was evaluated in terms of its efficiency, total weight, losses, and power to weight ratio.

Temperature Dependence on the Partial Discharge of Epoxy Molding Ignition Coil According to Applied Voltage (에폭시 성형 점화코일의 인가전압에 따른 부분 방전 온도 의존성)

  • Shin, Jong-Yeol;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.85-91
    • /
    • 2015
  • A gasoline engine automobile uses high voltage generation of the ignition coil, igniting and burning mixed fuel in the combustion chamber, which drives the engine. When the electronic control unit intermits a current supplied to the power transistor, counter electromotive force with a low voltage is generated by self induction action in the ignition primary coil and a high voltage is induced by mutual induction action with the primary ignition coil in the second ignition coil. The high voltage is supplied to the ignition plug in the combustion chamber, causing a spark, igniting the compressed mixed fuel. If a very small defect occurs inside the insulating material when a voltage is applied in said ignition coil, the performance of the insulation material will get worse and breakdown by a partial discharge of corona discharge. Thus, in this experiment, we are to contribute to improve the performance and ensure the reliability of the ignition coil by investigating partial discharge characteristics according to the change of voltage and temperature when a voltage is applied to the specimen of the epoxy molding ignition coil.

Design and control of a permanent magnet spherical wheel motor

  • Park, Junbo;Kim, Minki;Jang, Hyun Gyu;Jung, Dong Yun;Park, Jong Moon
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.838-849
    • /
    • 2019
  • We present a permanent magnet-based spherical wheel motor that can be used in omnidirectional mobility applications. The proposed motor consists of a ball-shaped rotor with a magnetic dipole and a hemispherical shell with circumferential air-core coils attached to the outer surface acting as a stator. Based on the rotational symmetry of the rotor poles and stator coils, we are able to model the rotor poles and stator coils as dipoles. A simple physical model constructed based on a torque model enables fast numerical simulations of motor dynamics. Based on these numerical simulations, we test various control schemes that enable constant-speed rotation along arbitrary axes with small rotational attitude error. Torque analysis reveals that the back electromotive force induced in the coils can be used to construct a control scheme that achieves the desired results. Numerical simulations of trajectories confirm that even without explicit methods for correcting the rotational attitude error, it is possible to drive the motor with a low attitude error (<5°) using the proposed control scheme.

Rotor Position Detection of a Toroidal Switched Reluctance Motor Using Interior Central Pole Search Coils (돌극 관통형 서치코일을 이용한 토로이달 스위치드 릴럭턴스 모터의 회전자 위치 검출)

  • Yang Hyong-Yeol;Lim Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.448-456
    • /
    • 2004
  • This paper presents a new method of detecting rotor position in Toroidal Switched Reluctance Motor (TSRM). In this paper, low cost and robust characteristics of rotor position detection method are focused in order to compensate for disadvantage of general sensors. Search coils wound through the hole of the stator poles are used for detection of the rotor position in TSRM. Rotor position detection is achieved through electromotive force patterns induced by time-varying flux linkage in the search coils and then adequate phase is excited for drive. The validity of the method is verified by experimental results.

A Study on the Characteristic of Energy Harvesting Mechanism for Batteryless Wireless Switch (배터리없는 무선 스위치를 위한 에너지 하베스팅 메커니즘의 특성 연구)

  • Choi, Yeon-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3114-3120
    • /
    • 2014
  • Wireless emergency call switch used in industry, the most important thing is the sustainable power supply. This paper describes the development and performance test results of a compact electromagnetic energy harvesting mechanism for batteryless wireless switch. This paper summarizes proposed structure design and magnetic field analysis results of the mechanism to generate an induced electromotive force using 2mm stroke of a single push action. This analysis results show the power output of the proposed mechanism up to VDC $4.5V{\pm}25%$ and it can hold up to 65ms of the power generation with greater than 2.5V.

An observation on the duration of the negative treatment by thermography (부항요법 후 적외선 체열촬영을 통한 관찰)

  • Choi, Yun-Hui;Cho, Jung-Hoon;Jang, Jun-Bock;Lee, Kyung-Sub
    • Journal of Oriental Medical Thermology
    • /
    • v.4 no.1
    • /
    • pp.15-22
    • /
    • 2005
  • Thermal change of thermogram can be induced by heat, drugs, diseases, stress, treatments and so on. Because they changed blood circulation of body surface. Negative treatment have been used in oriental medicine to decrease pain and to purify fluids and it can also change blood circulation of body surface. The purpose of this study was to observe the detail changes of temperature after negative treatment and to know the differences according to the negative pressures by thermography. This study was carried for 5 days and thermogram was operated 15 times. The patient had been treated on the back with electromotive type negative treatment and the treated sites was devides into 4 parts with different negative pressure. The results was that the temperature of all parts rised after treatment and the highest point was 10 minutes after treatment. The differences according to the negative pressures was that the temperature of the 55mmHg part rised particularly than the others and it continued until 40 minutes after treatment. There were no differences between 30mmHg and 40mmHg part. The temperature of 50mmHg part were low than the others during all thermogram.

  • PDF

Hydrogen Production by the High Temperature Steam Electrolysis of NiO/YSZ/Pt Cell (NiO/YSZ/Pt 전해셀의 고온 수증기 전해에 의한 수소제조 특성)

  • Yu, Ji-Haeng;Kim, Young-Woon;Lee, Shi-Woo;Seo, Doo-Won;Hong, Ki-Suk;Han, In-Sub;Woo, Sang-Kuk
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.1
    • /
    • pp.62-68
    • /
    • 2006
  • High temperature electrolysis is a promising technology to produce massively hydrogen using renewable and nuclear energy. Solid oxide fuel cell materials are candidates as the components of steam electrolysers. However, the polarization characteristics of the typical electrode materials during the electrolysis have not been intensively investigated. In this study, NiO electrode was deposited on YSZ electrolyte by spin coat process and firing at $1300^{\circ}C$. Pt electrode was applied on the other side of the electrolyte to compare the polarization characteristics with those by NiO during electrolysis. The $H_2$ evolution rate was also monitored by measuring the electromotive force of Lambda probe and calculated by thermodynamic consideration. At low current density, Pt showed lower cathodic polarization and thus higher current efficiency than Ni, but the oxidation of Ni into NiO caused the increase of anodic resistance with increasing current density. High overpotential induced high power consumption to produce hydrogen by electrolysis.

Rotor Position Detection and Drive of a Single Phase Switched Reluctance Motor Using a Search Coil (서치코일을 이용한 단상 스위치드 릴럭턴스 모터의 회전자 위치검출 및 구동)

  • Yang Hyong-Yeol;Lim Young-Cheol;Kim Kwang-Heon;Cha Deuk-Keun;Shin Duck-Shick
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.488-493
    • /
    • 2005
  • This paper presents a method of detecting rotor position for single phase Switched Reluctance Motors(SRMs) using a search coil. In the single phase SRM, mainly Hall effect sensors or photo interrupters have been used to detect the rotor position. But these sensors have many disadvantages. In this paper, low cost and robust characteristics of rotor position detection method are focused in order to compensate for disadvantage of existing sensors. Search coils wound around the stator pole are used for detection of the rotor position in single phase SRM. Rotor position detection is achieved through electromotive force patterns induced by time-varying flux linkage in the search coil. The simulation and experimental results are presented to verify the performance of the proposed method in this paper.

Numerical Modeling of the Hall Sensor Signal Used in Pulsed Eddy Current Testing and Comparison of Its Characteristics with a Coil Sensor Signal (홀센서를 사용한 펄스와전류탐상 신호의 수치모델링 및 코일센서 신호와의 특성 비교)

  • Shin, Young Kil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.490-495
    • /
    • 2016
  • Pulsed eddy current (PEC) testing signals have typically been obtained from the electromotive force induced in a sensor coil. However, an increasing number of studies have elected to incorporate the Hall plate as a sensor. Thus, accurate numerical modeling of the Hall sensor signal is necessary. In this study, a PEC probe is designed and a numerical modeling program is written so that Hall sensor signals and coil sensor signals can be calculated simultaneously. First, a step current is used as the input current. The predicted Hall sensor signals show similar characteristics to those of the experimental signals reported by other researchers. The characteristics of the two types of signals are then analyzed and compared as the thickness of test object changes. The results show that the Hall sensor signal provides less information for evaluating the thickness of the test object than the coil sensor signal. The response signals from a pulsed input current are also calculated, and it is confirmed that an equivalent reversed signal pattern appeared after the pulse width at both signals.

Development of the Electronic compass for Automatic Correction do Deviation (自動自差修正이 가능한 電子컴퍼스의 개발에 관한 연구)

  • Ahn, Young-Wha;Shin, Hyeong-Il;Shirai, Yasuyuki
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.4
    • /
    • pp.319-327
    • /
    • 2004
  • The Electronic compass made as a pilot model in this research is comprised of a three axis magnetic sensor, an accustar clinometer, and a fiber optic gyro sensor. The results confirming the output character, performance, and the accuracy of the deviation corrects of each sensor are as follows: 1) As for the output character of the three axis magnetic sensor, the magnetic field showed a cosine curve on the X axis, a - sine curve on the Y axis, and constant figures on the Z sensor. The horizontal component H and the vertical component V of the terrestrial magnetism calculated from the output voltage were 33.2${\mu}$T and 23.95${\mu}$T respectively. 2) When the fiber optic gyro sensor is fixed on the electromotive rotation transformation and has made a clockwise rotation with the speed of 10/sec, 20/sec, and 30/sec, the relationship between the output and the rotation angle of the fiber optic gyro sensor showed proportionally constant values. 3) When the magnetic field was induced with a magnet, the deviation before the correction was significant at a high of 25. However, the deviation after the correction using Poisson correction was in the 2 range, significantly lower than before the correction. It was confirmed that automatic deviation corrects are possible with the electronic compass made as a pilot model in this research.