• Title/Summary/Keyword: indoxyl sulfate

Search Result 8, Processing Time 0.026 seconds

p-Cresyl sulfate and indoxyl sulfate in pediatric patients on chronic dialysis

  • Hyun, Hye Sun;Paik, Kyung Hoon;Cho, Hee Yeon
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.4
    • /
    • pp.159-164
    • /
    • 2013
  • Purpose: Indoxyl sulfate and p-cresyl sulfate are important protein-bound uremic retention solutes whose levels can be partially reduced by renal replacement therapy. These solutes originate from intestinal bacterial protein fermentation and are associated with cardiovascular outcomes and chronic kidney disease progression. The aims of this study were to investigate the levels of indoxyl sulfate and p-cresyl sulfate as well as the effect of probiotics on reducing the levels of uremic toxins in pediatric patients on dialysis. Methods: We enrolled 20 pediatric patients undergoing chronic dialysis; 16 patients completed the study. The patients underwent a 12-week regimen of VSL#3, a high-concentration probiotic preparation, and the serum levels of indoxyl sulfate and p-cresyl sulfate were measured before treatment and at 4, 8, and 12 weeks after the regimen by using fluorescence liquid chromatography. To assess the normal range of indoxyl sulfate and p-cresyl sulfate we enrolled the 16 children with normal glomerular filtration rate who had visited an outpatient clinic for asymptomatic microscopic hematuria that had been detected by a school screening in August 2011. Results: The baseline serum levels of indoxyl sulfate and p-cresyl sulfate in the patients on chronic dialysis were significantly higher than those in the children with microscopic hematuria. The baseline serum levels of p-cresyl sulfate in the peritoneal dialysis group were significantly higher than those in the hemodialysis group. There were no significant changes in the levels of these uremic solutes after 12-week VSL#3 treatment in the patients on chronic dialysis. Conclusion: The levels of the uremic toxins p-cresyl sulfate and indoxyl sulfate are highly elevated in pediatric patients on dialysis, but there was no significant effect by probiotics on the reduction of uremic toxins in pediatric dialysis patients. Therefore, studies for other medical intervention to reduce uremic toxins are also necessary in pediatric patients on dialysis.

Assessment of Hepatic Cytochrome P450 3A Activity Using Metabolic Markers in Patients with Renal Impairment

  • Kim, Andrew HyoungJin;Yoon, Sumin;Lee, Yujin;Lee, Jieon;Bae, Eunjin;Lee, Hajeong;Kim, Dong Ki;Lee, SeungHwan;Yu, Kyung-sang;Jang, In-Jin;Cho, Joo-Youn
    • Journal of Korean Medical Science
    • /
    • v.33 no.53
    • /
    • pp.298.1-298.10
    • /
    • 2018
  • Background: The renal function of individuals is one of the reasons for the variations in therapeutic response to various drugs. Patients with renal impairment are often exposed to drug toxicity, even with drugs that are usually eliminated by hepatic metabolism. Previous study has reported an increased plasma concentration of indoxyl sulfate and decreased plasma concentration of $4{\beta}$-hydroxy (OH)-cholesterol in stable kidney transplant recipients, implicating indoxyl sulfate as a cytochrome P450 (CYP) inhibiting factor. In this study, we aimed to evaluate the impact of renal impairment severity-dependent accumulation of indoxyl sulfate on hepatic CYP3A activity using metabolic markers. Methods: Sixty-six subjects were enrolled in this study; based on estimated glomerular filtration rate (eGFR), they were classified as having mild, moderate, or severe renal impairment. The plasma concentration of indoxyl sulfate was quantified using liquid chromatography-mass spectrometry (LC-MS). Urinary and plasma markers ($6{\beta}$-OH-cortisol/cortisol, $6{\beta}$-OH-cortisone/cortisone, $4{\beta}$-OH-cholesterol) for hepatic CYP3A activity were quantified using gas chromatography-mass spectrometry (GC-MS). The total plasma concentration of cholesterol was measured using the enzymatic colorimetric assay to calculate the $4{\beta}$-OH-cholesterol/cholesterol ratio. The correlation between variables was assessed using Pearson's correlation test. Results: There was a significant negative correlation between MDRD eGFR and indoxyl sulfate levels. The levels of urinary $6{\beta}$-OH-cortisol/cortisol and $6{\beta}$-OH-cortisone/cortisone as well as plasma $4{\beta}$-OH-cholesterol and $4{\beta}$-OH-cholesterol/cholesterol were not correlated with MDRD eGFR and the plasma concentration of indoxyl sulfate. Conclusion: Hepatic CYP3A activity may not be affected by renal impairment-induced accumulation of plasma indoxyl sulfate.

Effect of Buddleja officinalis on the Indoxyl Sulfate-induced Inhibition of Cell Proliferation in HK-2 Cells (HK-2 세포에서 indoxyl sulfate로 유도된 세포증식억제에 대한 밀몽화의 효과)

  • Park, Hyoung-Kwun;Ju, Sung-Min;Kang, Min-Soo;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.527-531
    • /
    • 2012
  • The flowers and leaves buds of Buddleja officinalis are used to treat eye troubles, hernia, gonorrhea and liver troubles in Asia. The present study investigated the effect of aqueous extract of Buddleja officinalis (ABO) on indoxyl sulfate (IS)-induced inhibition of cell proliferation in HK-2 cells. The HK-2 cells were incubated with 5 mM IS 5 mM in the absence or presence of ABO (2, 5, 10, 20 ${\mu}g/ml$) for 24 hr. The effect of ABO on IS-treated HK-2 cells was investigated by using MTT assay, flow cytometric analysis and Western blot. IS-induced proliferation inhibition was recovered dose-dependently by treatment with ABO. ABO reduced S and G2/M phase cell cycle arrest induced by IS. Recovery effect of ABO on inhibition of cell proliferation by IS is related to the decrease of p21 expression. Taken together, these results suggest that recovery effect of ABO on proliferation of IS-treated HK-2 cells be associated with cell cycle progression through down-regulation of p21 levels.

Ursolic acid improves the indoxyl sulfate-induced impairment of mitochondrial biogenesis in C2C12 cells

  • Sasaki, Yutaro;Kojima-Yuasa, Akiko;Tadano, Hinako;Mizuno, Ayaka;Kon, Atsushi;Norikura, Toshio
    • Nutrition Research and Practice
    • /
    • v.16 no.2
    • /
    • pp.147-160
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Patients with chronic kidney disease (CKD) have a high concentration of uremic toxins in their blood and often experience muscle atrophy. Indoxyl sulfate (IS) is a uremic toxin produced by tryptophan metabolism. Although an elevated IS level may induce muscle dysfunction, the effect of IS on physiological concentration has not been elucidated. Additionally, the effects of ursolic acid (UA) on muscle hypertrophy have been reported in healthy models; however, it is unclear whether UA ameliorates muscle dysfunction associated with chronic diseases, such as CKD. Thus, this study aimed to investigate whether UA can improve the IS-induced impairment of mitochondrial biogenesis. MATERIALS/METHODS: C2C12 cells were incubated with or without IS (0.1 mM) and UA (1 or 2 μM) to elucidate the physiological effect of UA on CKD-related mitochondrial dysfunction and its related mechanisms using real-time reverse transcription-polymerase chain reaction, western blotting and enzyme-linked immunosorbent assay. RESULTS: IS suppressed the expression of differentiation marker genes without decreasing cell viability. IS decreased the mitochondrial DNA copy number and ATP levels by downregulating the genes pertaining to mitochondrial biogenesis (Ppargc1a, Nrf1, Tfam, Sirt1, and Mef2c), fusion (Mfn1 and Mfn2), oxidative phosphorylation (Cycs and Atp5b), and fatty acid oxidation (Pdk4, Acadm, Cpt1b, and Cd36). Furthermore, IS increased the intracellular mRNA and secretory protein levels of interleukin (IL)-6. Finally, UA ameliorated the IS-induced impairment in C2C12 cells. CONCLUSIONS: Our results indicated that UA improves the IS-induced impairment of mitochondrial biogenesis by affecting differentiation, ATP levels, and IL-6 secretion in C2C12 cells. Therefore, UA could be a novel therapeutic agent for CKD-induced muscle dysfunction.

Indoxyl sulfate, homocysteine, and antioxidant capacities in patients at different stages of chronic kidney disease

  • Chen, Cheng-Hsu;Huang, Shih-Chien;Yeh, En-Ling;Lin, Pei-Chih;Tsai, Shang-Feng;Huang, Yi-Chia
    • Nutrition Research and Practice
    • /
    • v.16 no.4
    • /
    • pp.464-475
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Increased levels of uremic toxins and decreased antioxidant capacity have a significant impact on the progression of chronic kidney disease (CKD). However, it remains unclear whether they interact with each other to mediate the damage of kidney function. The purpose of this study was to investigate whether uremic toxins (i.e., homocysteine and indoxyl sulfate [IS]), as well as glutathione-dependent antioxidant enzyme activities are dependently or independently associated with kidney function during different stages of CKD patients. SUBJECTS/METHODS: One hundred thirty-two patients diagnosed with CKD at stages 1 to 5 participated in this cross-sectional study. RESULTS: Patients who had reached an advanced CKD stage experienced an increase in plasma uremic toxin levels, along with decreased glutathione peroxidase (GSH-Px) activity. Plasma homocysteine, cysteine, and IS concentrations were all positively associated with each other, but negatively correlated to GSH-Px activity levels after adjusting for potential confounders in all CKD patients. Although plasma homocysteine, cysteine, IS, and GSH-Px levels were significantly associated with kidney function, only plasma IS levels still had a significant association with kidney function after these parameters were simultaneously adjusted. In addition, plasma IS could interact with GSH-Px activity to be associated with kidney function. CONCLUSIONS: IS plays a more dominant role than homocysteine and GSH-Px activity in relation to kidney function.

Metabolomic Profiles in Patients with Cervical Cancer Undergoing Cisplatin and Radiation Therapy

  • Seo-Yeon Choi;Suin Kim;Ji-Young Jeon;Min-Gul Kim;Sun-Young Lee;Kwang-Hee Shin
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.379-389
    • /
    • 2024
  • This study was aimed to evaluate endogenous metabolic changes before and after cisplatin and radiation therapy in patients with cervical cancer via untargeted metabolomic analysis using plasma samples. A total of 13 cervical cancer patients were enrolled in this study. Plasma samples were collected from each patient on two occasions: approximately one week before therapy (P1) and after completion of cisplatin and radiation therapy (P2). Of the 13 patients, 12 patients received both cisplatin and radiation therapy, whereas one patient received radiation therapy alone. The samples were analyzed using the Ultimate 3000 coupled with Q ExactiveTM Focus Hybrid Quadrupole-OrbitrapTM mass spectrometry (Thermo Fisher Scientific, Waltham, MA, USA). Chromatographic separation utilized a Kinetex C18 column 2.1×100 mm (2.6 ㎛) (Phenomenex, Torrance, CA, USA), and the temperature was maintained at 40℃. Following P2, there were statistically significant increases in the concentrations of indoxyl sulfate, phenylacetylglutamine, Lysophosphatidyethanolamine (LysoPE) (18:1), and indole-3-acetic acid compared with the concentrations observed at P1. Specifically, in the human papillomavirus (HPV) noninfection group, indoxyl sulfate, LysoPE (18:1), and phenylacetylglutamine showed statistically significant increases at P2 compared with P1. No significant changes in metabolite concentrations were observed in the HPV infection group. Indoxyl sulfate, LysoPE (18:1), phenylacetylglutamine, and indole-3-acetic acid were significantly increased following cisplatin and radiation therapy.

Paricalcitol attenuates indoxyl sulfate-induced apoptosis through the inhibition of MAPK, Akt, and NF-κB activation in HK-2 cells

  • Park, Jung Sun;Choi, Hoon In;Bae, Eun Hui;Ma, Seong Kwon;Kim, Soo Wan
    • The Korean journal of internal medicine
    • /
    • v.34 no.1
    • /
    • pp.146-155
    • /
    • 2019
  • Background/Aims: Indoxyl sulfate (IS) is a uremic toxin and an important causative factor in the progression of chronic kidney disease. Recently, paricalcitol (19-nor-1,25-dihydroxyvitamin D2) was shown to exhibit protective effects in kidney injury. Here, we investigated the effects of paricalcitol treatment on IS-induced renal tubular injury. Methods: The fluorescent dye 2',7'-dichlorofluorescein diacetate was used to measure intracellular reactive oxygen species (ROS) following IS administration in human renal proximal tubular epithelial (HK-2) cells. The effects of IS on cell viability were determined using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays and levels of apoptosis-related proteins (Bcl-2-associated protein X [Bax] and B-cell lymphoma 2 [Bcl-2]), nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) p65, and phosphorylation of mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) were determined by semiquantitative immunoblotting. The promoter activity of $NF-{\kappa}B$ was measured by luciferase assays and apoptosis was determined by f low cytometry of cells stained with f luorescein isothiocyanate-conjugated Annexin V protein. Results: IS treatment increased ROS production, decreased cell viability and induced apoptosis in HK-2 cells. IS treatment increased the expression of apoptosis-related protein Bax, decreased Bcl-2 expression, and activated phosphorylation of MAPK, $NF-{\kappa}B$ p65, and Akt. In contrast, paricalcitol treatment decreased Bax expression, increased Bcl-2 expression, and inhibited phosphorylation of MAPK, $NF-{\kappa}B$ p65, and Akt in HK-2 cells. $NF-{\kappa}B$ promoter activity was increased following IS, administration and was counteracted by pretreatment with paricalcitol. Additionally, flow cytometry analysis revealed that IS-induced apoptosis was attenuated by paricalcitol treatment, which resulted in decreased numbers of fluorescein isothiocyanate-conjugated Annexin V positive cells. Conclusions: Treatment with paricalcitol inhibited IS-induced apoptosis by regulating MAPK, $NF-{\kappa}B$, and Akt signaling pathway in HK-2 cells.

Specific urinary metabolites in canine mammary gland tumors

  • Valko-Rokytovska, Marcela;Ocenas, Peter;Salayova, Aneta;Titkova, Radka;Kostecka, Zuzana
    • Journal of Veterinary Science
    • /
    • v.21 no.2
    • /
    • pp.23.1-23.10
    • /
    • 2020
  • The identification of biomarkers that distinguish diseased from healthy individuals is of great interest in human and veterinary fields. In this research area, a metabolomic approach and its related statistical analyses can be useful for biomarker determination and allow non-invasive discrimination of healthy volunteers from breast cancer patients. In this study, we focused on the most common canine neoplasm, mammary gland tumor, and herein, we describe a simple method using ultra-high-performance liquid chromatography to determine the levels of tyrosine and its metabolites (epinephrine, 3,4-dihydroxy-L-phenylalanine, 3,4-dihydroxyphenylacetic acid, and vanillylmandelic acid), tryptophan and its metabolites (5-hydroxyindolacetic acid, indoxyl sulfate, serotonin, and kynurenic acid) in canine mammary cancer urine samples. Our results indicated significantly increased concentrations of three tryptophan metabolites, 5-hydroxyindolacetic acid (p < 0.001), serotonin, indoxyl sulfate (p < 0.01), and kynurenic acid (p < 0.05), and 2 tyrosine metabolites, 3,4-dihydroxy-L-phenylalanine (p < 0.001), and epinephrine (p < 0.05) in urine samples from the mammary gland tumor group compared to concentrations in urine samples from the healthy group. The results indicate that select urinary tyrosine and tryptophan metabolites may be useful as non-invasive diagnostic markers as well as in developing a therapeutic strategy for canine mammary gland tumors.