• Title/Summary/Keyword: indoor positioning systems

Search Result 152, Processing Time 0.02 seconds

A Repeater-Assisted Indoor GPS Signal Acquisition and Tracking (중계기 도움방식의 실내 GPS 신호 획득 및 추적)

  • Song, Ha-Yeong;Im, Sung-Hyuck;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.963-968
    • /
    • 2008
  • A new method to deal with GPS indoor positioning by means of time synchronized switching GPS repeater has been developed by authors[1]. But the developed indoor positioning system has problems. Therefore, we proposed a method for indoor positioning using GNSS Repeater-Assisted. To solve the 3-dimensional user's position, the 4 or more retransmission antennas are needed in the previously proposed methods. If a GPS repeater periodically transmits the signal like as pseudollite, the information for assisting an acquisition and tracking can be informed to receiver. Then, the user position can be calculated using the induced weak signal. The advantage of the proposed algorithm is use of only 1 re-transmission antenna because the re-transmitted signal are not used for positioning but used for assisting an acquisition and tracking weak signals induced indoor. We analyze the propose algorithms through the experiment and performed the test of feasibility.

Experimental Research on the Characteristics of Indoor Positioning Systems and Mobile Robot Navigation (실내용 위치센서의 특성과 이동로봇의 주행제어에 관한 실험적 연구)

  • Ahn, Jae-Wan;Jin, Ji-Yong;Chung, Woo-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.3
    • /
    • pp.231-239
    • /
    • 2010
  • For indoor mobile robots, the performance of autonomous navigation is affected by a variety of factors. In this paper, we focus on the characteristics of indoor absolute positioning systems. Two commercially available sensor systems are experimentally tested under various conditions. Mobile robot navigation experiments were carried out, and the results show that resultant performance of navigation is highly dependent upon the characteristics of positioning systems. The limitations and characteristics of positioning systems are analyzed from both quantitative and qualitative point of view. On the basis of the analysis, the relationship between the positioning system characteristics and the controller design are presented.

Design and Implementation of an Integrated Positioning System for Location-Based Services (위치기반서비스를 위한 통합측위시스템 설계 및 응용)

  • Yim, Jae-Geol;Nam, Yoon-Seok;Joo, Jae-Hun
    • Journal of Information Technology Applications and Management
    • /
    • v.13 no.4
    • /
    • pp.57-70
    • /
    • 2006
  • Location Based Service (LBS) provides high-value added service to users and various works about IBS have been actively performed. The core technology or LBS is positioning of the users. In the field of positioning, outdoor positioning and indoor positioning are developed separately. We are proposing a design of an outdoor-indoor positioning system, implementing a prototype of the system, and verifying the usefulness of the system through experiments. Our experimental results shows that the average error of our system is 4.8 m in the case of out-door positioning and it is 3.3 m in the case of in-door positioning.

  • PDF

Positioning Accuracy on Robot Self-localization by Real-time Indoor Positioning System with SS Ultrasonic Waves

  • Suzuki, Akimasa;Kumakura, Ken;Tomizuka, Daisuke;Hagiwara, Yoshinobu;Kim, Youngbok;Choi, Yongwoon
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.100-111
    • /
    • 2013
  • Indoor real-time positioning for multiple targets is required to realize human-robot symbiosis. This study firstly presents positioning accuracy on an autonomous mobile robot controlled by 3-D coordinates that is obtained by a real-time indoor positioning system with spread spectrum (SS) ultrasonic signals communicated by code-division multiple access. Although many positioning systems have been investigated, the positioning system with the SS ultrasonic signals can measure identified multiple 3-D positions in every 70 ms with noise tolerance and error within 100 mm. This system is also robust to occlusion and environmental changes. However, thus far, the positioning errors in an autonomous mobile robot, controlled by these systems using the SS ultrasonic signals, have not been evaluated as an experimental study. Therefore, a positioning experiment for trajectory control is conducted using an autonomous mobile robot and our positioning system. The effectiveness of this positioning method for robot self-localization is shown, from this experiment, because the average control error between the target position and the robot's position at 29 mm is obtained.

Location Correction Based on Map Information for Indoor Positioning Systems (지도 정보를 반영한 옥내 측위 보정 방안)

  • Yim, Jae-Geol;Shim, Kyu-Bark;Park, Chan-Sik;Jeong, Seung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.2
    • /
    • pp.300-312
    • /
    • 2009
  • An indoor location-based service cannot be realized unless the indoor positioning problem is solved. However, the cost-effective indoor positioning systems are suffering from their inaccurateness. This paper proposes a map information-based correction method for the indoor positioning systems. Using our Kalman filter with map information-based appropriate parameter values, our method estimates the track of the moving object, then it performs the Frechet Distance-based map matching on the obtained track. After that it applies our real time correction method. In order to verify efficiency of our method, we also provide our test results.

  • PDF

Identifying Correction Range of Geomagnetic Field for Indoor Positioning of Workers at Construction Site (건설현장 내 작업자 실내측위를 위한 지구자기장 보정 범위 도출)

  • Kim, Hyeonmin;Ahn, Heejae;Lee, Changsu;Kim, Harim;Ko, Youngwoong;Cho, HunHee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.93-94
    • /
    • 2022
  • Although various studies about indoor positioning systems, such as beacon and Wifi, have been conducting for indoor positioning of workers at construction sites, these systems have limitations in terms of accuracy or economics. To overcome these limitations, geomagnetic field sequence-based indoor positioning technology can be a good alternative. However, it is necessary to correct the geomagnetic field near the construction material stocking area since the geomagnetic field can be distorted near construction materials such as rebars. Therefore, this study conducted an experiment for identifying correction range of geomagnetic field near the construction material stocking area. It was analyzed that the geomagnetic field should be corrected up to 60cm in the horizontal direction from the stocking point if the height of stocking area for rebars is 40cm or more. This study can be used for important reference for development of geomagnetic field sequence-based indoor positioning technology suitable for construction sites.

  • PDF

A Modified Residual-based Extended Kalman Filter to Improve the Performance of WiFi RSSI-based Indoor Positioning (와이파이 수신신호세기를 사용하는 실내위치추정의 성능 향상을 위한 수정된 잔차 기반 확장 칼만 필터)

  • Cho, Seong Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.684-690
    • /
    • 2015
  • This paper presents a modified residual-based EKF (Extended Kalman Filter) for performance improvement of indoor positioning using WiFi RSSI (Received Signal Strength Indicator) measurement. Radio signal strength in indoor environments may have irregular attenuation characteristics due to obstacles such as walls, furniture, etc. Therefore, the performance of the RSSI-based positioning with the conventional trilateration method or Kalman filter is insufficient to provide location-based accurate information services. In order to enhance the performance of indoor positioning, in this paper, error analysis of the distance calculated by using the WiFi RSSI measurement is performed based on the radio propagation model. Then, an IARM (Irregularly Attenuated RSSI Measurement) error is defined. Also, it shows that the IARM error is included in the residual of the positioning filter. The IARM error is always positive. So, it is presented that the IARM error can be estimated by taking the absolute value of the residual. Consequently, accurate positioning can be achieved based on the IEM (IARM Error Mitigated) EKF with the residual modified by using the estimated IARM error. The performance of the presented IEM EKF is verified experimentally.

Radio Propagation Model and Spatial Correlation Method-based Efficient Database Construction for Positioning Fingerprints (위치추정 전자지문기법을 위한 전파전달 모델 및 공간상관기법 기반의 효율적인 데이터베이스 생성)

  • Cho, Seong Yun;Park, Joon Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.774-781
    • /
    • 2014
  • This paper presents a fingerprint database construction method for WLAN RSSI (Received Signal Strength Indicator)-based indoor positioning. When RSSI is used for indoor positioning, the fingerprint method can achieve more accurate positioning than trilateration and centroid methods. However, a FD (Fingerprint Database) must be constructed before positioning. This step is a very laborious process. To reduce the drawbacks of the fingerprint method, a radio propagation model-based FD construction method is presented. In this method, an FD can be constructed by a simulator. Experimental results show that the constructed FD-based positioning has a 3.17m (CEP) error. In this paper, a spatial correlation method is presented to estimate the NLOS(Non-Line of Sight) error included in the FD constructed by a simulator. As a result, the NLOS error of the FD is reduced and the performance of the error compensated FD-based positioning is improved. The experimental results show that the enhanced FD-based positioning has a 2.58m (CEP) error that is a reasonable performance for indoor LBS (Location Based Service).

An indoor fusion positioning algorithm of Bluetooth and PDR based on particle filter with dynamic adjustment of weights calculation strategy

  • Qian, Lingwu;Yuan, Bingjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3534-3553
    • /
    • 2021
  • The low cost of Bluetooth technology has led to its wide usage in indoor positioning. However, some inherent shortcomings of Bluetooth technology have limited its further development in indoor positioning, such as the unstable positioning state caused by the fluctuation of Received Signal Strength Indicator (RSSI) and the low transmission frequency accompanied by a poor real-time performance in positioning and tracking moving targets. To address these problems, an indoor fusion positioning algorithm of Bluetooth technology and pedestrian dead reckoning (PDR) based on a particle filter with dynamic adjustment of weights calculation strategy (BPDW) will be proposed. First, an orderly statistical filter (OSF) sorts the RSSI values of a period and then eliminates outliers to obtain relatively stable RSSI values. Next, the Group-based Trilateration algorithm (GTP) enhances positioning accuracy. Finally, the particle filter algorithm with dynamic adjustment of weight calculation strategy fuses the results of Bluetooth positing and PDR to improve the performance of positioning moving targets. To evaluate the performance of BPDW, we compared BPDW with other representative indoor positioning algorithms, including fingerprint positioning, trilateral positioning (TP), multilateral positioning (MP), Kalman filter, and strong tracking filter. The results showed that BPDW has the best positioning performance on static and moving targets in simulation and actual scenes.