• Title/Summary/Keyword: indoor plant

Search Result 253, Processing Time 0.03 seconds

Evaluation of Salt Tolerance of Three Foliage Plant as affected by Salinity Concentration in Indoor Ornamental Hydroculture (실내 관상용 물재배에서 염분농도에 따른 3가지 관엽식물의 내염성 평가)

  • Jin Hee Ju;Sun Young Park;Yong Han Yoon
    • Journal of Environmental Science International
    • /
    • v.33 no.4
    • /
    • pp.257-268
    • /
    • 2024
  • This study investigated the growth characteristics of Euonymus japonicus, Hedera helix, and Peperomia puteolata treated with different calcium chloride (CaCl2) concentrations to evaluate salt tolerance limits in hydroculture cultivation. Six concentrations of CaCl2 (0, 1, 2, 5, 10, and 15 g·L-1 referred to as Cont., C1, C2, C5, C10, and C15) were applied to solution - grown plant species. The survival rate, growth index, plant height, plant width, leaf width, leaf length, number of leaves, and relative chlorophyll contents were measured at monthly intervals. Euonymus japonicus, Hedera helix, and Peperomia puteolata survived up to C2, C5, and C10 at each CaCl2 concentration. The Euonymus japonicus was higher in the C1 treatment than in the Cont. for most growth characteristics. Hedera helix had the highest leaf width, leaf length, and number of leaves in the Cont., a significant difference was observed compared with the C1 treatment. The chlorophyll content did not differ significantly between the C5 and Cont. treatments. The leaf width and length of Peperomia puteolata were greater in the C2 and C1 treatments than in the Cont., whereas the number of leaves and chlorophyll content were the highest in C5. Dry weight analysis revealed that Euonymus japonicus, Hedera helix, and Peperomia puteolata were the lowest in the Cont. treatments. Euonymus japonicus was 74% in C15, and Hedera helix, and Peperomia puteolata were analyzed at approximately 37%- 50% and 9%-14%, respectively, regardless of the concentration in the CaCl2 treatment groups. In indoor hydroponic cultivation, the salt tolerance limit concentrations of Euonymus japonicus, Hedera helix, and Peperomia puteolata are 2, 5, and 10 g·L-1, respectively, indicating that hydroculture management techniques should be applied at higher concentrations.

A Study on Recommendation Application of Air Purification Companion Plant using MBTI (MBTI를 통한 공기 정화 반려식물 추천 애플리케이션 연구)

  • Yu-Jun Kang;Youn-Seo Lee;Hyeon-Ah Kim;Hee-Soo Kim;Won-Whoi Huh
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.139-145
    • /
    • 2024
  • Since COVID-19, most of people's main living spaces have been moved indoors. Due to this influence, many people's interest in companion plants continues to rise. People who raise companion plants often raise them for the purpose of emotional stability or air purification. In fact, plants have the effect of giving people a sense of emotional stability and the ability to purify indoor air is excellent depending on what kind of plant they are. However, if you do not have knowledge of plants, you will not know which plants have excellent air purification effects, and even if you grow them, you will face a problem that withers quickly. Therefore, in this paper, we develop an app that provides users who do not have prior knowledge to store and manage their MBTI and member information in a database using databases and MBTI, and based on this, recommend plant data that fits their preferences with the user and manage their schedules through calendars.

Effects of Indoor Light Intensity on the Growth Characteristics of $Distylium$ $racemosum$, $Osmanthus$ $heterophyllus$ and $Damnacanthus$ $indicus$ (실내 광조건이 조록나무, 구골나무 및 호자나무의 생육에 미치는 영향)

  • Song, Eun-Young;Kim, Seong-Cheol;Chun, Seung-Jong;Lim, Chan-Kyu;Kim, Mi-Sun;Kim, Chun-Hwan;Ro, Na-Young
    • Journal of Bio-Environment Control
    • /
    • v.21 no.1
    • /
    • pp.66-73
    • /
    • 2012
  • This study was conducted to develope new indoor plants and to investigate the effects of light intensity on the growth of $Distylium$ $racemosum$, $Osmanthus$ $heterophyllus$ and $Damnacanthus$ $indicus$ under 100 lux, 1,000 lux and 2,500 lux fluorescent lighting for six months in the environment-controlled growth chambers. 1. $Distylium$ $racemosum$ : Most of $Distylium$ $racemosum$ under 100 lux light intensity were blighted in two months, whereas it was 100% of survival under 1,000 lux and 2,500 lux after six months. Plant height, number of leaf, leaf width and leaf length became higher as light intensity increased. The plants maintained under 2,500 lux showed the greatest plant height and leaf number. 2. $Osmanthus$ $heterophyllus$ : $Osmanthus$ $heterophyllus$ under 100 lux light intensity were blighted in two months, whereas it was 100% of survival under 1,000 lux and 2,500 lux after six months. However, under 1,000 lux, it paused plant height and was not increased in leaf number any more. A plant growth status showed the highest value under 2,500 lux in all conditions. 3. $Damnacanthus$ $indicus$ : $Damnacanthus$ $indicus$ was defoliated and blighted under 100 lux light intensity in two months, whereas it was grown properly with 1,000 lux or above. However, the growth under 2,500 lux of $Damnacanthus$ $indicus$ was superior to other treatments. But, $Damnacanthus$ $indicus$ under 1,000 lux after 6 months was more favorable chlorophyll contents, leaf length and leaf width than 2,500 lux. As increasing slightly of chlorophyll contents and leaf growth under 1,000 lux, $Damnacanthus$ $indicus$ could be utilized highly to the indoor ornamental plant.

Reduction of Outdoor and Indoor Ambient Dose Equivalent after Decontamination in the Fukushima Evacuation Zones

  • Yoshida-Ohuchi, Hiroko;Kanagami, Takashi;Naitoh, Yutaka;Kameyama, Mizuki;Hosoda, Masahiro
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.42-47
    • /
    • 2017
  • Background: One of the most urgent issues following the accident at the Fukushima Daiichi nuclear power plant (FDNPP) was the remediation of the land, in particular, for residential area contaminated by the radioactive materials discharged. In this study, the effect of decontamination on reduction of ambient dose equivalent outdoors and indoors was evaluated. The latter is essential for residents as most individuals spend a large portion of their time indoors. Materials and Methods: From December 2012 to November 2014, thirty-seven Japanese single-family detached wooden houses were investigated before and after decontamination in evacuation zones. Outdoor and indoor dose measurements (n = 84 and 114, respectively) were collected based on in situ measurements using the NaI (Tl) scintillation surveymeter. Results and Discussion: The outdoor ambient dose equivalents [$H^*(10)_{out}$] ranged from 0.61 to $3.71{\mu}Sv\;h^{-1}$ and from 0.23 to $1.32{\mu}Sv\;h^{-1}$ before and after decontamination, respectively. The indoor ambient dose equivalents [$H^*(10)_{in}$] ranged from 0.29 to $2.53{\mu}Sv\;h^{-1}$ and from 0.16 to $1.22{\mu}Sv\;h^{-1}$ before and after decontamination, respectively. The values of reduction efficiency (RE), defined as the ratio by which the radiation dose has been reduced via decontamination, were evaluated as $0.47{\pm}0.13$, $0.51{\pm}0.13$, and $0.58{\pm}0.08$ ($average{\pm}{\sigma}$) when $H^*(10)_{out}$ < $1.0{\mu}Sv\;h^{-1}$, $1.0{\mu}Sv\;h^{-1}$ < $H^*(10)_{out}$ < $2.0{\mu}Sv\;h^{-1}$, and $2.0{\mu}Sv\;h^{-1}$ < $H^*(10)_{out}$, respectively, indicating the values of RE increased as $H^*(10)_{out}$ increased. It was found that the values of RE were $0.53{\pm}0.12$ outdoors and $0.41{\pm}0.09$ indoors, respectively, indicating RE was larger outdoors than indoors. Conclusion: Indoor dose is essential as most individuals spend a large portion of their time indoors. The difference between outdoors and indoors should be considered carefully in order to estimate residents' exposure dose before their returning home.

Analysis of Fungal Concentration and Species Present as Bio-aerosols in Oak Mushroom Cultivation Houses (국내 표고버섯 재배사에 바이오에어로졸로서 분포하는 진균의 농도와 종 분석)

  • Kim, Seong Hwan;Kim, Ji Eun;Kim, Jun Young
    • The Korean Journal of Mycology
    • /
    • v.46 no.4
    • /
    • pp.393-403
    • /
    • 2018
  • Bio-aerosols transported by the air have been considered as the major source of dispersal agents that contaminate agricultural products. Unseen fungal spores are known sources of bio-aerosols that harm mushroom and human health during mushroom cultivation. This study was conducted to obtain basic data on the concentration and species distribution of fungi present in the indoor air of oak mushroom cultivation houses in Korea. In 2015 and 2016, we sampled and analyzed indoor airborne fungal spores 21 times from 13 oak mushroom cultivation farms located in six different provinces. The concentration of airborne fungi ranged from $1.30{\times}10^2$ to $1.59{\times}10^4cfu/m^3$. Surprisingly, in 20 sampling cases, the fungal concentration exceeded $500cfu/m^3$, which is recommended as the indoor air quality standard by the Ministry of Environment, Korea. A total of 450 fungi were isolated and identified to belong to 33 genera and 46 species. Among the identified fungi, human pathogens (4 genera and 4 species) and plant pathogens (10 genera and 13 species) were present. In addition, Trichoderma harzianum, Trichoderma atroviride, and Trichoderma longibrachiatum, which are detrimental species that affect mushroom health, were found 17 out of 21 sampling times. Our results provide evidence that indoor air quality should be improved for better management of mushroom cultivation houses.

Evaluation on the Potential of 18 Species of Indoor Plants to Reduce Particulate Matter

  • Jeong, Na Ra;Kim, Kwang Jin;Yoon, Ji Hye;Han, Seung Won;You, Soojin
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.6
    • /
    • pp.637-646
    • /
    • 2020
  • Background and objective: The main objective of this study is to measure the amount of particulate matter (PM) reduction under different characteristics of leaves in 18 different species of indoor plants. Methods: First, a particular amount of PM was added to the glass chambers (0.9×0.86×1.3 m) containing the indoor plant (height = 40 ± 20 cm), and the PM concentration were measured at 2-hour intervals. The experiment with the same conditions was conducted in the empty chamber as the control plot. Results: The range of PM reduction per unit leaf area of 18 species of experimental plants was 3.3-286.2 ㎍·m-2 leaf, total leaf area was 1,123-4,270 cm2, and leaf thickness was 0.14-0.80 mm and leaf size 2.27-234.47 cm2. As time passed, the concentration of PM decreased more in the chamber with plants than in the empty chamber. Among the 18 indoor plants, the ones with the greatest reduction in PM2.5 in 2 hours and 4 hours of exposure to PM2.5 were Pachira aquatica and Dieffenbachia amoena. As the exposure time of PM increased, the efficiency of reducing PM2.5 was higher in plants with medium-sized leaves than plants with large or small leaves. The effect of reducing PM2.5 was higher in linear leaves than round or lobed leaves. Plants with high total leaf area did not have advantage in reducing PM because the leaves were relatively small and there were many overlapping parts between leaves. In the correlation between leaf characteristics and PM 2.5 reductions, all leaf area and leaf thickness showed a negative and leaf size showed a positive correlation with PM reduction. Conclusion: The PM reduction effect of plants with medium-sized leaves and long linear leaves was relatively high. Moreover, plants with a large total leaf area without overlapping leaves will have advantaged in reducing PM. Plants are effective in reducing PM, and leaf characteristics are an important factor that affects PM reduction.

Effects of Indoor Greening Method on Temperature, Relative Humidity and Particulate Matter Concentration (실내녹화 방법이 온·습도 및 미세먼지 농도에 미치는 영향)

  • Kwon, Kei-Jung;Park, Bong-Ju
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.4
    • /
    • pp.1-10
    • /
    • 2017
  • This study investigated indoor temperature and humidity control and PM1 and PM10 mitigation effects of a single green wall (Case 1), two green walls (Case 2), and two green walls plus a waterfall (Case 3) in comparison with a control without either a green wall or waterfall. Experiments were conducted in the office of Chungbuk National University from August to September, 2015. Experiments were carried out sequentially in the order of control, Case 1, Case 2, and Case 3. Data collected from August 17 to August 20, 2015 (Experiment 1), and from August 31 to September 3, 2015 (Experiment 2), when outdoor temperature was relatively constant, were analyzed. Plant volume ratios by indoor landscaping of the control, Case 1, Case 2 and Case 3 were 0.0, 0.6, 1.2, and 1.4%, respectively. Compared to the control, average temperatures of Case 1, Case 2 and Case 3 were decreased by 0.3~0.7, 0.7~0.9 and $1.0^{\circ}C$, respectively, and relative humidity was increased by 1.8~8.7, 9.2~14.6 and 14.8~21.9%, respectively. Three hundred minutes after exposure to mosquito repellent incense particles, the ratio of the remaining PM1 of the control, Case 1, Case 2 and Case 3 were 25.0, 22.0%, 21.2%, 17.3%, respectively, in Experiment 1 and 42.3, 28.9, 23.1, and 30.9%, respectively, in Experiment 2. As indoor greening increased the effect of indoor temperature, PM1 and PM10 mitigation were greater, and temperature and humidity were lower. The greater the relative humidity was, the faster PM1 and PM10 mitigation tended to be.

Rooting Performance Using Cuttings and Analysis of Light and Soil Environmental Characteristics for Indoor Plants of Winter Daphne (Daphne odora Thunb) (서향의 삽목번식 방법과 실내도입을 위한 광, 토양에 관한 연구)

  • Ro, Na-Young;Ko, Ho-Chul;Hur, On-Sook;Kang, Man-Jung;Oh, Se-Jong;Huh, Yun-Chan
    • Journal of Bio-Environment Control
    • /
    • v.20 no.4
    • /
    • pp.346-351
    • /
    • 2011
  • This research was done to identify the mass propagation method in winter daphne (Daphne odora Thunb) using its softwood cuttings and to investigate its plant characters established at different light and soil conditions as an indoor plant. Cuttings from winter daphne were taken and grown in different treatment consisted of rooting media (perlite, vermiculite, perlite + vermiculite (1 : 1) and commercial horticulture media soil), indole butyric acid (IBA) hormone concentrations (0, 100, 500, 1000 ppm and Rootone) and date of cutting. Transplants were grown at different light intensities (100, 1000, 2500 lux and control) and growing media. Results showed that cuttings grown in perlite + vermiculite (1 : 1) gave higher percentage (100%) rooting. Cuttings treated with Rootone and IBA 100 ppm showed good rooting growth and cutting taken in June, 25 gave the highest rooting (96.7%). The best plant growth obtained at 1000 lux (56~60 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) followed by 2500 lux (125~130 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and scoria mixed with commercial horticulture media soil showed better growth of transplants.

Analytical examples of volatile amines in ambient airs (공기 중 저급아민류의 분석과 측정 사례)

  • Yu, Mee-Seon;Yang, Sung-Bong
    • Analytical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.216-223
    • /
    • 2005
  • In this study, several kinds of volatile amines in ambiant air were collected and their concentrations were expected from the calibration curves prepared by standard solutions of 7 amines by the official measuring method prescribed in Japanese Offensive Odor Law. The obtained calibration curves showed a good linearity and the detection limit of trimethyl amine was found to be about 0.033 ppb (0.040 ng) in case of 50 liters air. It means that trimethyl amine could be detected with the concentration of lower than its permitting level at the border line of companies. As typical examples of measuring amines in air, results of investigation of two sewage works and one rendering plant around the capital area indicated that 4 kinds of amines, i.e. methyl amine, dimethyl amine, trimethyl amine and isopropyl amine were detectable and concentrations of trimethyl amine at the primary sedimentation pond and sludge dewatering building of the sewage plant A showed 9.07 ppb and 7.79 ppb respectively, being over the concentration of odor strength 2.5, And the aeration tank, excrement input facility and indoor of maintenance room of excrement process building in the sewage plant B showed 70.0 ppb of dimethyl amine and 2.44 ppb of trimethyl amine.

A Systems Engineering Approach to Development of a Worker's Location Monitoring System in Ship and Offshore Plant (선박 및 해양플랜트 환경에서 작업자 위치 모니터링 시스템 개발을 위한 시스템엔지니어링 접근 방법)

  • Park, Jong Hee;Kim, Han June;Yoon, Jae Jun;Kim, Hyoung Min;Hong, Dae Geun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.1
    • /
    • pp.68-77
    • /
    • 2020
  • The shipbuilding and offshore industry is a large and complex assembly industry, which causes many safety accidents. The major accidents in the shipbuilding and offshore industry workplaces are stenosis, falling objects, dust, fire, explosions, and gas poisoning. The accident by worker in this industry mainly has three factors: frequent movement, narrow work space, and increased use of subcontractors. To control these factors, it is necessary to monitor the worker's location and work status. In this paper, a worker location monitoring system using inaudible sound wave was designd that can be used in environments with many metal barriers. The process included deriving stakeholder requirements, transforming to system requirements, designing system architecture, and developing prototype. The prototype was validated by third-party testing agency. As a result, it satisfied the designed performance and verified its feasibility.