• Title/Summary/Keyword: indoor navigation

Search Result 345, Processing Time 0.028 seconds

3D Terrain Reconstruction Using 2D Laser Range Finder and Camera Based on Cubic Grid for UGV Navigation (무인 차량의 자율 주행을 위한 2차원 레이저 거리 센서와 카메라를 이용한 입방형 격자 기반의 3차원 지형형상 복원)

  • Joung, Ji-Hoon;An, Kwang-Ho;Kang, Jung-Won;Kim, Woo-Hyun;Chung, Myung-Jin
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.26-34
    • /
    • 2008
  • The information of traversability and path planning is essential for UGV(Unmanned Ground Vehicle) navigation. Such information can be obtained by analyzing 3D terrain. In this paper, we present the method of 3D terrain modeling with color information from a camera, precise distance information from a 2D Laser Range Finder(LRF) and wheel encoder information from mobile robot with less data. And also we present the method of 3B terrain modeling with the information from GPS/IMU and 2D LRF with less data. To fuse the color information from camera and distance information from 2D LRF, we obtain extrinsic parameters between a camera and LRF using planar pattern. We set up such a fused system on a mobile robot and make an experiment on indoor environment. And we make an experiment on outdoor environment to reconstruction 3D terrain with 2D LRF and GPS/IMU(Inertial Measurement Unit). The obtained 3D terrain model is based on points and requires large amount of data. To reduce the amount of data, we use cubic grid-based model instead of point-based model.

Analysis of Eye-safe LIDAR Signal under Various Measurement Environments and Reflection Conditions (다양한 측정 환경 및 반사 조건에 대한 시각안전 LIDAR 신호 분석)

  • Han, Mun Hyun;Choi, Gyu Dong;Seo, Hong Seok;Mheen, Bong Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.5
    • /
    • pp.204-214
    • /
    • 2018
  • Since LIDAR is advantageous for accurate information acquisition and realization of a high-resolution 3D image based on characteristics that can be precisely measured, it is essential to autonomous navigation systems that require acquisition and judgment of accurate peripheral information without user intervention. Recently, as an autonomous navigation system applying LIDAR has been utilized in human living space, it is necessary to solve the eye-safety problem, and to make reliable judgment through accurate obstacle recognition in various environments. In this paper, we construct a single-shot LIDAR system (SSLs) using a 1550-nm eye-safe light source, and report the analysis method and results of LIDAR signals for various measurement environments, reflective materials, and material angles. We analyze the signals of materials with different reflectance in each measurement environment by using a 5% Al reflector and a building wall located at a distance of 25 m, under indoor, daytime, and nighttime conditions. In addition, signal analysis of the angle change of the material is carried out, considering actual obstacles at various angles. This signal analysis has the merit of possibly confirming the correlation between measurement environment, reflection conditions, and LIDAR signal, by using the SNR to determine the reliability of the received information, and the timing jitter, which is an index of the accuracy of the distance information.

A Study on EM Wave Absorber for Electromagnetic Wave Environment of Wireless LAN at 5.2 GHz (5.2 GHz 무선 LAN의 전자파 환경 대책용 전파흡수체에 관한 연구)

  • Yoo, Gun-Suk;Choi, Dong-Soo;Kim, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.34 no.1
    • /
    • pp.15-19
    • /
    • 2010
  • Recently, the wireless LAN system is rapidly growing because of its convenience of high speed communication. However, the wireless LAN systems at indoor places occur multi-propagation path by reflected waves from walls, ceilings, floors, and desks. Multipath problems cause transmission errors and degradation of communication speed. These problems can be solved by using EM wave absorbers. In this paper, we analyzed property of Graphite and derived the optimum ratio of Graphite: CPE to develop EM wave absorber for the wireless LAN system. First, we fabricated several samples in different composition ratios of Graphite and CPE, and then measured the reflection coefficient of each samples. Material constants of permittivity and permeability were calculated using the measured data and designed EM wave absorber. Secondly, the EM wave absorber was fabricated and tested on the base of the simulation data. As a result, it showed that the EM wave absorber in 1.7 mm thickness with the ratio of Graphite: CPE=50:50 wt.% has excellent absorption ability more than 27 dB at 5.2 GHz.

A Study on the Lighting Control System using Fuzzy Control System and RGB Modules in the Ship's Indoor (퍼지 제어 시스템과 RGB LED 모듈을 이용한 선박 실내용 조명 제어 시스템에 관한 연구)

  • Nam, Young-Cheol;Lee, Sang-Bae
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.421-426
    • /
    • 2018
  • With regard to LED lighting devices which have currently been commercialized, LED operating sequences are being sold in a fixed state. In such a state, the external environmental factors are not taken into consideration as only the illumination environment application is considered. Currently, it is difficult to create an optimal lighting environment which can adapt to changes in external environmental factors in the ship. Therefore, it was concluded that there is a need to input the external environment value so that the optimal illumination value can be reflected in real time in order to adapt more organically and actively to the change of external environmental factors. In this paper, we used a microprocessor as an integrated management system for environmental data that changes in real time according to existing external environmental factors. In addition, a controller capable of lighting control of RGB LED module by combining fuzzy inference system. For this, a fuzzy control algorithm is designed and a fuzzy control system is constructed. The distance and the illuminance value from the external environment element are input to the sensor, and these values are converted to the optimum illumination value through the fuzzy control algorithm, and are expressed through the dimming control of the RGB LED module and the practical effectiveness of the fuzzy control system is confirmed.

Vision-based Localization for AUVs using Weighted Template Matching in a Structured Environment (구조화된 환경에서의 가중치 템플릿 매칭을 이용한 자율 수중 로봇의 비전 기반 위치 인식)

  • Kim, Donghoon;Lee, Donghwa;Myung, Hyun;Choi, Hyun-Taek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.667-675
    • /
    • 2013
  • This paper presents vision-based techniques for underwater landmark detection, map-based localization, and SLAM (Simultaneous Localization and Mapping) in structured underwater environments. A variety of underwater tasks require an underwater robot to be able to successfully perform autonomous navigation, but the available sensors for accurate localization are limited. A vision sensor among the available sensors is very useful for performing short range tasks, in spite of harsh underwater conditions including low visibility, noise, and large areas of featureless topography. To overcome these problems and to a utilize vision sensor for underwater localization, we propose a novel vision-based object detection technique to be applied to MCL (Monte Carlo Localization) and EKF (Extended Kalman Filter)-based SLAM algorithms. In the image processing step, a weighted correlation coefficient-based template matching and color-based image segmentation method are proposed to improve the conventional approach. In the localization step, in order to apply the landmark detection results to MCL and EKF-SLAM, dead-reckoning information and landmark detection results are used for prediction and update phases, respectively. The performance of the proposed technique is evaluated by experiments with an underwater robot platform in an indoor water tank and the results are discussed.

System Requirements and UseCase for Mobility Impared People (교통약자 지원시스템을 위한 요구사항과 유즈케이스)

  • Nam, Doo-Hee;Lim, Kwan-Su
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.1 s.12
    • /
    • pp.58-71
    • /
    • 2007
  • The disabled and elderly people have a wide variety of functional impairments. By disability and elderly user group definition, identification of users needs and specification of content requirements were studied. Existing technologies including location, navigation and information exchange devise and communication systems were analyzed to design proper integrated system for indoor and outdoor uses. There are two types of services considered in the project: assisted living services(ALS) including health and emergency needs and assisted mobility services(AMS) with transportation needs. To develop each content, content identification and requirements was studied through interviews and expert consultations. System requirements and specification using usecase technique for disabled and elderly people are discussed.

  • PDF

Real-Time Flight Testing for Developing an Autonomous Indoor Navigation System for a Multi-Rotor Flying Vehicle (실내 자율비행 멀티로터 비행체를 위한 실시간 비행시험 연구)

  • Kim, Hyeon;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.343-352
    • /
    • 2016
  • A multi-rotor vehicle is an unmanned vehicle consisting of multiple rotors. A multi-rotor vehicle can be categorized as tri-, quad-, hexa-, and octo-rotor depending on the number of the rotors. Multi-rotor vehicles have many advantages due to their agile flight capabilities such as the ability for vertical take-off, landing and hovering. Thus, they can be widely used for various applications including surveillance and monitoring in urban areas. Since multi-rotors are subject to uncertain environments and disturbances, it is required to implement robust attitude stabilization and flight control techniques to compensate for this uncertainty. In this research, an advanced nonlinear control algorithm, i.e. sliding mode control, was implemented. Flight experiments were carried out using an onboard flight control computer and various real-time autonomous attitude adjustments. The feasibility and robustness for flying in uncertain environments were also verified through real-time tests based on disturbances to the multi-rotor vehicle.

Obstacle Recognition by 3D Feature Extraction for Mobile Robot Navigation in an Indoor Environment (복도환경에서의 이동로봇 주행을 위한 3차원 특징추출을 통한 장애물 인식)

  • Jin, Tae-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.1987-1992
    • /
    • 2010
  • This paper deals with the method of using the three dimensional characteristic information to classify the front environment in travelling by using the images captured by a CCD camera equipped on a mobile robot. The images detected by the three dimensional characteristic information is divided into the part of obstacles, the part of corners, and th part of doorways in a corridor. In designing the travelling path of a mobile robot, these three situations are used as an important information in the obstacle avoidance and optimal path computing. So, this paper proposes the method of deciding the travelling direction of a mobile robot with using input images based upon the suggested algorithm by preprocessing, and verified the validity of the image information which are detected as obstacles by the analysis through neural network.

Design and Implementation of Multi-Sensor-based Vehicle Localization and Tracking System (멀티센서 기반 차량 위치인식 시스템의 설계 및 구현)

  • Jang, Yoon-Ho;Nam, Sang-Kyoon;Bae, Sang-Jun;Sung, Tae-Kyung;Kwak, Kyung-Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.121-130
    • /
    • 2009
  • In this paper, Gaussian probability distribution model based multi-sensor data fusion algorithm is proposed for a vehicular location awareness system. Conventional vehicular location awareness systems are operated by GPS (Global Positioning System). However, the conventional system is not working in the indoor of building or urban area where the receiver is difficult to receive the signal from satellites. A method which is combined GPS and UWB (Ultra Wide-Band) has developed to improve this problem. However, vehicular is difficult to receive seamless location information since the measurement systems by both GPS and UWB convert the vehicle's movement information separately at each sensor. In this paper, normalized probability distribution model based Hybrid UWB/GPS is proposed by utilizing GPS location data and UWB sensor data. Therefore the proposed system provides information with seamless and location flexible properties. The proposed system tested by Ubisense and Asen GPS in the $12m{\times}8m$ outdoor environments. As a result, the proposed system has improved performance for accurateness and connection ability between devices to support various CNS (Car Navigation System).

  • PDF

A Study on Improvement of Indoor Positioning Accuracy Using Diagonal Survey Method (대각측량 방식을 이용한 실내 측위 정확도 개선에 관한 연구)

  • Jeong, Hyun gi;Park, Tae hyun;Kwon, Jang woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.160-172
    • /
    • 2018
  • The method of estimating a position using a GPS has been applied to various fields including a navigation system of an automobile. However, since it is difficult to measure GPS signals indoors, it is difficult to locate specific objects indoors such as a building or factory. To overcome these limitations, this study proposes a system for object location estimation based on Bluetooth5 for the management of materials in factories. The object position estimation system consists of a Bluetooth signal generator, a receiver, and a database server. A signal generator based on Bluetooth Low Energy(BLE) is attached to the material and a receiver is appropriately arranged inside the factory. In this study, we propose "Diagonal Survey Method", a 4 - axis survey algorithm using four receivers to reduce the error of existing trilateration method. The proposed algorithm showed good performance compared to the conventional trilateration and we verified the effectiveness of the proposed system and algorithm by performing the experiment by installing the system in the factory.