• Title/Summary/Keyword: indoor leakage

Search Result 37, Processing Time 0.021 seconds

A Study on the Mitigation of Threat Zones for Indoor Chlorine Release using Effective Leakage Areas of Building and Box Model (건물의 유효누출면적 및 박스모델을 이용한 염소 실내 누출의 위험지역 완화에 관한 연구)

  • Kwak, Sollim;Lee, Eunbyul;Choi, Youngbo
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.51-59
    • /
    • 2018
  • It is difficult to determine the outdoor toxic level of hazardous chemicals that are leaked in the building, since there are no efficient ways to calculate how much percentage of the leaked chemicals is released into the outdoor atmosphere. In address to these problems, we propose a reasonable box model that can quantitatively evaluate the mass rate of the indoor chlorine leakage into the outside of the building. The proposed method assumes that the indoor chlorine leakage is fully mixed with the indoor air, and then the mixture of the chlorine and indoor air is exfiltrated into the outside of the building through effective leakage areas of the building. It is found that the exfiltration rate of the mixture of the chlorine and indoor air is strongly dependent on the temperature difference between inside and outside the building than the atmospheric wind speed. As compared with a conventional method that uses a vague mitigation factor, our method is more effective to evaluate the outdoor toxic threat zone of the chlorine that are leaked in the building, because it can consider the degree of airtight of the building in the evaluation of the threat zone.

A Study on Intelligent Technique for Correlation Application of Overcurrent and Leakage Current Signals in the Indoor Wiring (옥내배선에서 과전류와 누전 신호의 상관관계 적용을 위한 지능형 기법 연구)

  • Kim, Doo-Hyun;Kim, Eun-Jin;Kim, Sung-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.14-19
    • /
    • 2015
  • The purpose of this paper is to study the correlation application that electrical fire causes occurs for overcurrent and leakage current signals in the indoor wiring. In the order to purpose, the causes data of overcurrent, or leakage current of electrical fire are drawn out referring to past studies, consulting with experts and experimental data. The correlation application was then applied with fuzzy logic of intelligent technique. To check the reliability and performance of the correlation application, modified center of area(CoA) was adopted to calculate the possibility that electrical fire occurs, whose value was then compared to the results. The chance of electrical fire calculated is higher when two causes of fire are put into the CoA of the correlation application of this paper than that of when each cause is separately put into the CoA. The correlation application developed in this study enables better analysis on possible electrical fire due to overcurrent, or leakage current and provides managers with the possibility of electrical fire so that they can better manage at a time of overcurrent, or leakage current.

Analysis of Infiltration of Outdoor Particulate Matter into Apartment Buildings (외기 중 미세먼지의 공동주택 실내 유입에 관한 연구)

  • Bang, Jong-Il;Jo, Seong-Min;Sung, Min-Ki
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.61-68
    • /
    • 2018
  • Recently, concentration of fine and ultra-fine particulate matter(PM) has been increased in KOREA. The increase of PM in KOREA is due to increase of domestic industries and yellow dust from china. PM is known to cause diseases such as dyspnoea, asthma, arrhythmia. Since PM is harmful to human, KOREA Ministry of Environment(ME) warns people to stay indoors when the outdoor PM concentration is high. However, prior studies has shown that indoor PM concentration can be relatively high when outdoor PM concentration is high due to infiltration of PM into buildings though leakage areas. In this study, airtightness, indoor and outdoor pressure difference and PM 2.5 & 10 concentration were measured in an apartment complex to observe PM infiltrating into building. Field measurement was conducted in newly-built apartment buildings to avoid the influence of indoor PM which can be generated by residents. The airtightness test was conducted to identify the leakage areas of the apartment, such as electric outlets and supply/exhaust diffusers. The airtightness test result showed that the air leakage area of the building was dominant in buildings envelop. According to indoor and outdoor pressure difference measurement result and PM concentration measurement result, it can be concluded that outdoor PM can infiltrate into indoor by leakage areas when wind is blown toward the apartment. As a result, pressure difference formed by the external weather condition and architectural characteristics such as the airtightness in building can influence PM to infiltrate into buildings. In further studies, I/O ratio, stack-effect, infiltration and penetration factor will be considered.

The Field Measurement of Airtightness in the Apartment Buildings (신축공동주택의 기밀성능 실측에 관한 연구)

  • Park, Won seok;Yoon, Jae Ock
    • KIEAE Journal
    • /
    • v.3 no.3
    • /
    • pp.43-50
    • /
    • 2003
  • Nowdays the apartment is a main type of modernized residential buildings. According to the improvement of construction techniques and functions of windows and doors, recent apartments are enhanced air tightness of windows, doors and building envelopes. As Infiltration is decreased and natural ventilation is reduced, energy could be saved in winter. However, indoor air quality is bad. The air Infiltration of a building could be enlarged by physical actions, such as building designs, constructions and reduction of air tightness which is caused by aging. This research analyzes and measures with KNS-4000P (Sapporo air tightness measurement) the air tightness of the high rise apartments which is recently constructed and not occupied yet. With depressurization method, the KNS-4000 installed on the window and the indoor air-leakage was measured. At that time, Air come out from the edge of the windows and doors because of the pressure differences between indoor and outdoor. We measure the amount of the air as effective air leakage areas. This method of depressurization takes less time to measure than other methods and is less affected from other conditions. We measured infiltration of total 56 household, 29 households S apartment (total floor area : $64.42m^2$) in Balan and 29 households D apartment(total floor area : $78.21m^2$) in Chonan. As a result of the field measurements at October 2003, normalized leakage area of D apartment in Cheonan was $2.05cm^2/m^2{\sim}3.49cm^2/m^2$ (average: $2.77cm^2/m^2$) and normalized leakage area of S apartment in Balan is $1.23cm^2/m^2{\sim}1.68cm^2/m^2$ (average: $1.5cm^2/m^2$).

Risk Assessment of Indoor Pollution by BTEX Released from Groundwater (지하수내 BTEX에 의한 실내오염시 위해도 평가)

  • 유동한;이한수;김상준;양지원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.5
    • /
    • pp.373-381
    • /
    • 2002
  • Benzene, Ethyl-benzene, Toluene and Xylene (BTEX) can be released to a groundwater in case of the oil leakage from underground storage tank of a gas station. These chemicals are found to contribute to the total inhalation risk from contaminated indoor air. This study presents the assessment of a human exposure to such chemicals released from the groundwater into indoor air. At first, a 2-compartment model is developed to describe the transfer and distribution of the chemicals released from groundwater in a house through showering, washing clothes, and flushing toilets. The model is used to estimate a daily human exposure through inhalation of such BTEX for adults based on two sets of exposure scenarios. Finally, a sensitivity analysis is used to identify important parameters. The results obtained from the study would help to increase the understanding of risk assessment issues associated with the indoor pollution by BTEX released from contaminated groundwater.

Field Measurements of Indoor Air Quality in Apartment Units at Medium-size Cities (중소도시 공동주택의 실내공기질(새집증후군) 실측에 관한 연구)

  • Yoon, JaeOck
    • KIEAE Journal
    • /
    • v.10 no.4
    • /
    • pp.81-86
    • /
    • 2010
  • The main sources of the new house syndrome(sometimes it called sick building syndrome) are a concentration of formaldehyde (HCHO) and a concentration of total volatile organic compounds(TVOC). I had field measurements of indoor air quality in the apartment unit at medium-size cities(Y city, C city). I measured indoor air temperature, HCHO concentration in 16 units, TVOC concentration in 6 units and air tightness in 7 units. And I measured outdoor air quality, HCHO concentration and TVOC concentration. Mean concentration of HCHO was $357{\mu}g/m^3$(2006 standard=$120{\mu}g/m^3$), mean concentration of TVOC was $3,092{\mu}g/m^3$ and mean effective air leakage area was 193 cm2. There was a close relation between the indoor air temperature and HCHO concentration, between the indoor air temperature and TVOC concentration. Air tightness also had relation.

A Study on the Performance of Heat Recovery Ventilators for Apartment Houses (공동주택용 폐열회수형 환기장치의 성능에 관한 측정 연구)

  • Chang, Hyun-Jae;Hong, Seok-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.26-34
    • /
    • 2008
  • Heat recovery ventilator(HRV) is recommended to improve indoor air quarlity (IAQ) and energy conservation in apartment houses. Recently, in Korea, HRV is produced from many manufacturers. However, there have been not so many experiences to apply HRV in apartment houses and verification on the performance such as heat exchange efficiency, carry-over rate, internal leakage, etc. have not been carried out sufficiently. So in this study, fan performance, heat exchange efficiency, air leakage, internal exhaust leakage, external leakage and sound level of HRV were examined for selected HRV models under domestic and international standard. Results of performance test, there were need to improve latent heat exchange efficiency and sound level of HRV.

A Numerical Study of Building Orientation Effects on Evacuation Standard in Case of Toxic Gas Leakage (독성 가스 누출 시 건물 방향이 대피 기준에 미치는 영향에 관한 수치 해석 연구)

  • Seungbum Jo
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.12-18
    • /
    • 2023
  • The effective evacuation strategy according to the accident scenario is crucial to minimize human casualties in the event of toxic gas leak accidents. In this study, the effect of the direction of a building and the location of an industrial complex on the increase in indoor concentration and outdoor diffusion was examined under the same leakage conditions, and effective evacuation criteria were established. In addition, the guidelines for building directions were suggested when constructing buildings that would mitigate human damage caused by chemical accidents. Three scenarios where buildings faced the front, side, and rear of the leakage direction were investigated through CFD simulations. The results revealed that when the building faced the industrial complex, both indoor and outdoor average gas concentrations increased significantly, reaching up to 120 times higher than the other two orientations. Moreover, the indoor space was filled with toxic gas substances more than twice in the same time due to the rapid increase of indoor concentration rate. In cases where the building's windows were positioned at the front, toxic gas stagnation occurred around the building due to pressure differences and reduced flow velocities. Based on our findings, the implementation of these guidelines will contribute to safeguarding residents by minimizing exposure to toxic gas during chemical accidents.

Interference Reduction Scheme for Mobile WiMAX in an Indoor environment (실내 환경의 Mobile WiMAX 시스템을 위한 간섭 완화 기술에 대한 연구)

  • Oh, Yong-Il;Ha, Kwang-Jun;Koo, Sung-Wan;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.454-458
    • /
    • 2008
  • This article describes an interference reduction scheme for Mobile WiMAX in an indoor environment. The feasibility of user deployed femtocells in the same frequency channel as an existing macro cell network is investigated. One of the important requirements for co-channel operation of femtocells such as auto-configuration and self optimization are discussed. In femtocell deployments, leakage of the pilot signal to the outside of a house can result of the higher number of mobility events caused by passing user of macrocell. This interference effect can be minimized by reducing the pilot power using proper scheme. This paper introduces existing auto-configuration method of power control and proposed interference reduction scheme using power control for Mobile WiMAX in an indoor environment.

  • PDF

A Study on the High Speed Interruption of Parallel Arcing (병렬아크의 고속차단에 관한 연구)

  • Kil, Gyung-Suk;Ji, Hong-Keun;Park, Dae-Won;Kim, Il-Kwon;Kim, Young-Il;Cho, Young-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.95-100
    • /
    • 2008
  • Conventional Earth Leakage Circuit Breakers (ELCBs) have defects of a breaking failure or a long breaking-time against parallel arc current. In this paper, breaking characteristics of conventional ELCBs were analyzed by simulation of parallel arc in a low-voltage indoor wiring system, and an air-core current sensor and a signal converter being most available for parallel arc detection were developed and applied to a conventional ELCB. The proposed tripped the ELCB regardless of the location of parallel arc. The breaking-time was in ranges of $1.74{\sim}8.3[ms]$ depending on the phase of arc generation, which is about 5 times as fast as conventional ELCBs with the breaking-time of 50[ms].