• Title/Summary/Keyword: indoor cell

Search Result 143, Processing Time 0.024 seconds

Gonadal Maturation and Spawning of River Puffer Takifugu obscurus Indoor Cultured in Low Salinity (저염분에서 사육한 황복 Takifugu obscurus 생식소의 성숙과 산란)

  • Kang, Hee-Woong;Chung, Ee-Yung;Kang, Duk-Young;Park, Young-Je;Jo, Ki-Che;Kim, Gyu-Hee
    • Journal of Aquaculture
    • /
    • v.21 no.4
    • /
    • pp.331-338
    • /
    • 2008
  • Monthly changes in the gonadosomatic index (GSI) and hepatosomatic index (HSI) of wild river puffer Takifugu obscurus, and water quality environment in spawning area during breeding season were investigated from March 1995 to February 1996. Monthly changes in GSI and HSI of T. obscurus, that was cultured in low salinity, were calculated. The external morphology of the gonads, germ cell differentiation during gametogenesis and the reproductive cycle with the gonad developmental phases were investigated by histological analysis. The optimum water quality environment in Ganggyung, Choongcheongnam-do, where is spawning ground of wild T. obscurus, was $15-20^{\circ}C$ (water temperature) and 0 psu (salinity). Monthly changes in the GSI in females and males reached a maximum in May, and then rapidly decreased. Therefore, it is assumed that in the natural condition the spawning period of wild T. obscurus is May to June. In females and males, it showed a negative correlationship between the GSI and HSI. The external morphology of the gonads in female and male T. obscurus, that was cultured in low salinity, is composed of a pair of saccular structure. Based on monthly changes in the GSI, it is assumed that in female T. obscurus, that was cultured in low salinity, spawn from March through May. Therefore, it showed a negative correlationship between changes in the GSI and HSI. On the whole, in females and males, it showed a similar pattern between wild and cultured T. obscurus. The reproductive cycle with the gonad developmental phases can be classified into successive five stages in females: the early growing stage, late growing stage, mature stage, ripe and spent stage, and recovery and resting stage. In males, that can be divided into successive four stages: the growing stage, mature stage, ripe and spent stage, and recovery and resting stage. In case of wild T. obscurus, the spawning period has once a year, however, those cultured in the high water temperature ($20-27^{\circ}C$) - low salinity (under 3.3 psu) condition have reproductive characteristics having possibilities of discharge of eggs and sperms year-round as a multiple spawner.

Naturally Collection and Development until Yolk Absorption of Domestic Walleye Pollock Theragra chalcogramma Fertilized Eggs and Larvae (국내 명태 Theragra chalcogramma 자연채란과 난황흡수까지의 난 발생)

  • Seo, Joo-young;Kwon, O-Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.49-54
    • /
    • 2017
  • We collected and reared Theragra chalcogramma walleye pollock brood-stock for use in natural spawning tests and undertook to obtain domestic pollock via fertilized egg capture, development of fertilized eggs, and absorption of yolk sac after hatching. Whole pollock were caught with trammel and set nets and immediately placed in a deep-sea water tank. Adults were the most common pollock age group (43.0%; n = 86) among the 254 pollock captured in March 2014 with 57.9% (n = 147) being captured off Southern Gosung, Korea. The main spawning period of pollock is February (spawning phase of 91% of pollock). From the deep-sea tank, we collected 1640 mL of naturally fertilized eggs (~820,000 eggs) from 12 spawning events occurring between February 4 and 22 2015. The floating/ live eggs were maintained in deep-sea water tanks at $5.5{\pm}0.2^{\circ}C$. Egg size was $1.5{\pm}0.03mm$. Six hours after fertilization the eggs were at the 2 cell stage, and the eggs hatched approximately 340 hours after collection. At hatching, larval length and yolk sac area were $5.2{\pm}0.25mm$ and $9.5{\pm}1.00mm^2$ (100%), respectively. Four days after hatching, the yolk sac area was $2.2{\pm}0.53mm^2$ ($23.1{\pm}5.55%$). This is the first report of collection of naturally fertilized eggs from pollock and their subsequent hatching while held in an indoor deep-sea water tank. The results suggest that such collection could assist in the recovery of pollock resources and the possibility of domestic rearing of cultivated larvae.

The Influence of Water Temperature and Salinity on Filtration Rates of the Hard Clam, Gomphina veneriformis (Bivalvia) (수온과 염분의 변화에 따른 연령별 대복 (Gomphina veneriformis: Bivalvia) 의 여과율 변동)

  • Shin, Hyun-Chool;Lee, Jung-Ho;Jeong, Hyo-Jin;Lee, Jung-Sick;Park, Jung-Jun;Kim, Bae-Hoon
    • The Korean Journal of Malacology
    • /
    • v.25 no.2
    • /
    • pp.161-171
    • /
    • 2009
  • The present study was performed to describe the influence of water temperature and salinity on filtration rates of the venus clam, Gomphina veneriformis, a suspension-feeding (filter-feeding) bivalve species. The calmswere collected from the eastern coastal area of Sokcho, Gangneung and Jumunjin at Kangwon-do, Korea, during December 2006 and May 2007. Isochrysis galbana (KMCC H-002) cells as food organisms were indoor-cultured by f/2 medium, and were used to measure the filtration rate of clam. Filtration rates of clam were measured by indirect method. Cell concentration of food organisms were determined by direct counting cells used the hemacytometer under the light microscope. The filtration rates of clams by water temperature sharply increased with temperatures up to $15^{\circ}C$ as optimum temperature and above this temperature, the filtration rates decreased exponentially. Venus clams showed very low filtration rates at low salinity (10-15 psu) and maximum values at high salinity (30-35 psu). Regardless of water temperature and salt change, 2-year class clams showed high filtration rates, but low in 4-year-class. Polynomial regression curves with water temperature were shifted to the left in low temperature region. Thermal coefficient $Q_{10}$ values showed much higher values at low temperature range than at high temperature range, too. These results indicate that the venus clam is more sensitive in cold water. Polynomial regression curves with salinity were shifted to the right in high saline region. According to this study, the venus clam Gomphina veneriformis, subtidal filter-feeding bivalve, was the stenothermal organism, inhabited mainly in low temperature and the stenohaline, in high saline waters.

  • PDF