• Title/Summary/Keyword: indoor and outdoor air

Search Result 513, Processing Time 0.027 seconds

Comparative Study on Photochemical Reactions of Aromatic Hydrocarbons in Indoor and Outdoor Smog Chambers (실내/외 스모그 챔버에서의 방향족계 탄화수소의 광화학 반응 비교 연구)

  • Dong Jong-In;Ahn Heung-Soon
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.231-240
    • /
    • 2005
  • The number of cases exceeding environmental standards of atmospheric ozone in the major cities in Korea has steadily increased during the past decades. In order to understand and analyze the atmospheric reactions in the atmosphere, especially the secondary photochemical reactions, smog chambers studies have been performed very actively by many research groups worldwide. However, these studies have focused on the mechanism of photochemical reactions in high concentration conditions, not at the ambient levels. Therefore, in-depth studies in these conditions are essentially needed to realize exact mechanism in the atmosphere near the earth surface, especially at Korean atmospheric conditions. In this experiment, the mechanism of photochemical smog was examined through a comparative experiment of smog chambers under sun light and black light conditions. The results of our study indicated that concentrations of ozone, aldehyde, and PAN increased as the radiation of light source increases. Photochemical reaction patterns can be considered quite similar for both black light and sun light experiments. Based on our experiments using toluene as a reactant which is present at significant high levels in ambient air relative to other VOCs, it was found that toluene could contribute notably to oxidize NO to $NO_2$, this reaction can eventually generate some other photochemical oxidants such as ozone, aldehyde, and PAN. The results of simulation and experiments generally showed a good agreement quite well except for the case of $O_3$. The restriction of oxidization of NO to $NO_2$ seems to cause this difference, which is mainly from the reaction of peroxy radical itself and other reactants in the real gas.

Evaluation for Fundamental Properties of Concrete mixed with Pyroclastic Flow Deposit (화쇄류 퇴적물을 혼입한 콘크리트의 기초특성 평가)

  • Choi, Hyeong-Gil;Kim, Gyu-Yong;Noguchi, Takafumi
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.49-57
    • /
    • 2016
  • The aim of this study was to investigate the fundamental properties of pyroclastic flow deposit (PFD), and evaluate the fresh and strength properties of concrete mixed with PFD by indoor tests. The fresh properties, strength properties, shrinkage properties, and durability of the concrete mixed with PFD were also evaluated by outdoor plant tests. the harmful alkali-silica reaction did not occur by mixing concrete with PFD. ages. Moreover, no difficulty was found to be associated with concrete manufacture in the plant because no change in air contents and noticeable slump loss occurred by mixing concrete with PFD. The strength properties, shrinkage properties, and durability of the concrete mixed with PFD were also compared with those of normal concrete. With a suitable temperature control and curing method of concrete, the concrete mixed with PFD is considered to be useful in the construction material field.

Intelligent and Responsive Window Opening-Closing Operation Process for Carbon Dioxide(CO2) Management of Secondary School Classroom (중등학교 교실의 이산화탄소(CO2) 관리를 위한 지능형 창호개폐 작동 프로세스)

  • Choi, Yoon-Young;Lee, Hyun-Soo
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.25 no.4
    • /
    • pp.19-30
    • /
    • 2018
  • The school classroom is a common living place where students spend 7 to 14 hours a day to prepare for their careers. Therefore, if the ventilation of the classroom is not properly performed, it may lead to the deterioration of learning ability due to the unclear air. The concentration of carbon dioxide in the classroom is reported to be high, and the increase in carbon dioxide concentration has a negative effect on the learner's academic performance. In this context, the purpose of this study is to propose a methodology for intelligent and responsive window opening-closing operation process that can reduce the concentration of $CO_2$ in the classroom in order to build a support space that can create an effective teaching-learning environment for adolescents. The specific objectives are as follows. First of all, we define the concept of window opening-closing operation. Secondly, twe develop the operation process of window opening-closing. Thirdly, we develop an algorithm for real-time window opening and closing (process) (Window Opening-Closing Operation Process). Finally, we verify the intelligent responsive window opening-closing operation process through developing examples of window opening-closing operation process using the parametric design program. This study is a preliminary study to develop algorithms necessary for window opening-closing operation. Based on the first-order algorithm, We simulated window opening-closing operations according to a hypothetical scenario. As a result, This study can show that the window is open and close depending on the $CO_2$ concentration, but the $CO_2$ concentration in the room is higher than outdoors. Consequentially, we suggest that it is necessary to develop an algorithm to supplement these results because window is often not working when the temperature difference between indoor and outdoor in winter is large.

Comparison of VOCs Concentration Characteristic According to Measurement Methods in Exhibition Hall (휘발성유기화합물(VOCs)의 측정방법에 따른 유물 전시관 내 농도 분포 특성 비교)

  • Lim, BoA;Lee, Sun Myung
    • 보존과학연구
    • /
    • s.35
    • /
    • pp.25-44
    • /
    • 2014
  • In this study, measured annual year and seasonal concentrations of VOCs by Active type and Passive type using the measurement and analysis method in the exhibition hall and outdoor. It was compared with the correlation between the methods according the comparison of methods to measured concentrations. As a results, the annual average concentrations of TVOC in exhibition room($906.5{\mu}g/m^3$) was greater than for most of the study period, more than 1.8 times the standard in the Ministry of Environment. ${\Sigma}VOCs$ concentration of exhibition room by Active type was higher than Passive type. Some VOCs was decreased with the lapse of time a temporary increase tendencies was. The annual average I/O ratio of TVOC was 9.0, ${\Sigma}VOCs$ was confirmed to occur in a large amount inside the exhibition hall ${\Sigma}VOCs$ was studied to 34.0. Correlation coefficient of ${\Sigma}VOCs$ was 0.367. Toluene was 0.567 that the survey was the largest analysis to the relationship between the two methods.

  • PDF

Student Exposure to Airborne Dusts in Classroom of Middle Schools (중학교 학생들의 분진폭로에 관한 조사연구)

  • 이영길;백남원
    • Journal of Environmental Health Sciences
    • /
    • v.13 no.2
    • /
    • pp.25-33
    • /
    • 1987
  • This study was carried out to evaluate student exposures to dust in classroom of middle schools. A total of four schools, such as two in an urban and two in a rural area, were selected for this study. In this study, airborne dust concentrations were measured during a period from July 8 to July 18, 1986. Additional measurements of dust concentrations were conducted from November 4 to 7, 1986 to compare the results by seasonal variation. The results of this study were as follows. 1. Respirable dust concentrations were measured by both filtration method (C mg/m$^3$) and Digital Aerosol Monitor (cpm) to calculate anexchange factor K. K- value was 0.159 as follows. $K=\frac{c}{cpm} = \frac{2.71}{17.09} = 0.159$ 2. In summer when windows were opened, the concentrations of airborne respirable dusts measured by filter sampling method were 0.54-1.37 mg/m$^3$ in the morning and 0.79-1.75 mg/m$^3$ in the afternoon. Thus, higher levels were indicated in the afternoon. Meanwhile, the concentrations of airborne respirable dusts measured in winter were approximately twice as high as those in summer. 3. The highest dust concentrations were determined in School D which is a coeducational school with classroom of concrete floor. Walking roads in School D were not paved and students did not wear indoor-shoes. Dust levels in School D were approximately twice as high as levels in School B. All of the measured dust levels in four schools exceeded Korean Standard for outdoor air, 0.3 mg/m$^3$ for 24 hours. Results by Digital Aerosol Monitor indicated that there was no significant difference in dust levels among grades. The concentration of airborne dusts in the classroom was 1.5-3.0 times higher than that in the hall way. The concentration of airborne dusts during recess was 1.3-1.6 times higher than that during class. In winter, the dust concentrations during clean-up exceeded the permissible exposure limit, 10 mg/m$^3$ (as total dusts), for occupational exposures. 4. The concentrations of total dusts measured in winter were 1.5-2.4 times higher than those of respirable dusts measured simultaneously.

  • PDF

Evaluation of Adsorbent Sampling Methods for Volatile Organic Compounds in Indoor and Outdoor Air (실내·외 공기 중 휘발성 유기화합물에 대한 흡착 시료채취 방법의 평가)

  • Baek, Sung-Ok;Moon, Young-Hun
    • Analytical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.496-513
    • /
    • 2004
  • This study was carried out to evaluate the performance of sampling and analytical methodology used for the measurement of toxic volatile organic compounds (VOCs) in the ambient air. VOCs were determined by the adsorbent tube sampling and automatic thermal desorption coupled with GC/MSD analysis. Target analytes were 33 compounds including major aromatic compounds such as BTEX, and halogenated compounds. The methodology was investigated with a wide range of different adsorbents which are commercially available and have been frequently adopted for the VOC measurement. A total of 10 adsorbents were tested in this study: 6 carbon-based adsorbents such as Carbotrap, Carbopack B, Carbosieve S-III, Carboxen 1000, Carbotrap C, Activated Charcoal; and 4 polymer-based adsorbents including Tenax, Porapak Q, Chromosorb 102, and Chromosorb 106. The sampling performance was evaluated with respect to the sampling capacity of VOCs with single-adsorbent and multiple-adsorbents methods for standard samples and field samples. As a result, the best adsorbents for single-adsorbent method in the sampling of toxic organic compounds (including benzene, toluene, xylenes etc.) appeared to be Carbotrap, Carbopack B and Tenax TA. On the other hand, Chromosorb 102, Chromosorb 106 and Porapak Q were found to be unsuitable adsorbents for VOC measurement based on thermal desorption method. Multi-adsorbent packings were evaluated with 4 carbon-based adsorbents, which classified by 3 combination sets of double adsorbents and 2 combination sets of triple adsorbents. The results indicated that the most suitable combination for toixc VOC measurements is Carbotrap C with Carbotrap. Multi-sorbents tubes packed with a strong adsorbent such as Carbosieve S-III or Carboxen 1000 were found to be relatively unsuitable for several compounds, not only owing to the effect of migration of adsorbed compounds from weaker adsorbent to stronger adsorbent, but to hydrophobic nature of the adsorbents. Therefore, it should be addressed that selection of a proper adsorbent (or combination of multi sorbents) is extremely important to obtain reliable data for the concentrations of toxic VOCs in indoor and outdoor environments.

Analysis on the Characteristics of Ventilation and Cooling for Greenhouses Constructed in Reclaimed Lands (간척지 온실의 환기 및 냉방 특성 분석)

  • Nam, Sang-Woon;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.181-187
    • /
    • 2017
  • The purpose of this study was to provide basic data for development of environmental design technology for greenhouses constructed in reclaimed lands. The climatic conditions around seven major reclaimed land areas with a plan to install advanced horticultural complexes in Korea were analyzed. The characteristics of natural ventilation and temperature rise through the thermal environment measurement of the greenhouse in Saemangeum were analyzed. The part to be applied to the environmental design of the greenhouses in reclaimed lands were reviewed. Results of comparing the ventilation rate of the greenhouse according to the presence or absence of plants showed the greenhouse with plants had the lower ventilation rate, but the smaller rise of indoor temperature due to the evapotranspiration of plants. In the greenhouse with plants, the number of air changes was in the range of 0.3 to 0.9 volumes/min and the average was 0.7 volumes/min. The rise of indoor temperature relative to outdoor temperature was in the range of 1 to $5^{\circ}C$ and the average $2.5^{\circ}C$. The natural ventilation performance of the experimental greenhouse constructed in the reclaimed land almost satisfied the recommended ventilation rate in summer and the rise of indoor temperature relative to outdoor temperature did not deviate considerably from the cultivation environment of plants. Therefore, it was determined that the greenhouse cultivation in Saemangeum reclaimed land is possible with only natural ventilation systems without cooling facilities. As the reclaimed land is located in the seaside, the wind is stronger than the inland area, and the fog is frequent. This strong wind speed increases the ventilation rate of greenhouses, which is considered to be a factor for reducing the cooling load. In addition, since the fog duration is remarkably longer than that of inland area, the seasonal cooling load is expected to decrease, which is considered to be advantageous in terms of the operation cost of cooling facilities.

A Study on Performance of Energy Recovery Ventilator under Outdoor Conditions in Korea (국내 외기조건에서 폐열회수 환기장치의 성능에 관한 연구)

  • Kim, Il-Gyoum;Park, Woo-Cheul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.52-57
    • /
    • 2009
  • In this study, a simulation program has been developed to predict the performance of energy recovery ventilators fur various indoor and outdoor conditions. In order to get a fundamental data about domestic air condition, the heat recovery ventilator is selected with the product of the wind quantity $250m^3/h$ Japanese M companies which are satisfied at High Efficiency Certification Standards. At the case on which the heat recovery ventilator is established, heating load decreases by 69.1% and cooling load decreases by 59.4% in Seoul, and heating load decreases by 66.4% and cooling load decreases by 59.6% in Pusan. The maximum humidification load of winter or summer time with $0.737{\ell}/h$ or $1.008{\ell}/h$ occurred in March from Kangnung or August from Mokpo respectively. In Southern part region and East Sea of winter time, the condensation or frost on exhaust side dose not occurred on exhaust side, but the area of that outside is occurred. Therefore, the preventive measure from the area except a southern part region and the east coast area must be considered, in order to condense or frost not to occur on exhaustion side in winter.

Characteristic of Cabin Temperature According to Thermal Load Condition of Heat Pump for Electric Vehicle (전기자동차용 히트펌프의 열 부하 조건에 따른 캐빈온도 특성)

  • Park, Ji Soo;Han, Jae Young;Kim, Sung-Soo;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • The Positive Temperature Coefficient (PTC) is used for cabin air heating of a battery electric vehicle, which is different from conventional vehicles. Since the PTC heater consumes a large quantity of power in a parasitic manner, many valuable studies have been reported in the field of alternative heat pumps. In this study, a model for an R134a heat pump taking into account the thermal environment of the cabin was developed for a MATLAB/SIMULINK(R) platform. Component and cabin models are validated with reference values. Results show that the heat pump is more competitive for parasitic power consumption over all ambient temperature conditions. Additionally, the method of waste heat recovery to overcome disadvantages when temperatures are below zero is applied to efficiently operate the heat pump.

Predicting Influence of Changes in Indoor Air Temperature and Humidity of Wooden Cultural Heritages by Door Opening on Their Conservation Environment (개방에 따른 실내 온습도 변화가 목조문화재 보존환경에 미치는 영향 예측)

  • Kim, Min-Ji;Shin, Hyun-Kyeong;Choi, Yong-Seok;Kim, Gwang-Chul;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.798-803
    • /
    • 2015
  • This study was conducted to predict the effect of door opening in wooden cultural heritages (WCHs) on their conservation environment. For this prediction, measured relative humidity (RH) and surface wood moisture content (MC) of inner part of wood columns in open wooden building and neighboring closed wooden building were compared with minimum RH, including the duration of minimum RH, and MC required for spore germination and resultant growth of wood-degrading fungi reported in some literatures. Moisture conditions, namely RH of inside wooden building and MC of wood was unsuitable for decay and sap-stain fungi all the year round; however, moisture conditions during summer season was suitable for spore germination and resultant growth of surface mold fungi, regardless of door opening. When compared, the duration of minimum (75%) or higher RH and the number of wood columns with MC level greater than the minimum MC (15%) during summer season, the surface mold related to the conservation environment of inside wooden building was somewhat better in open building than in closed building. Rather, doors should be opened in closed building for reducing indoor RH as a necessary measure during summer season when outdoor RH is high.