• Title/Summary/Keyword: individual learning

Search Result 1,663, Processing Time 0.024 seconds

DCNN Optimization Using Multi-Resolution Image Fusion

  • Alshehri, Abdullah A.;Lutz, Adam;Ezekiel, Soundararajan;Pearlstein, Larry;Conlen, John
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4290-4309
    • /
    • 2020
  • In recent years, advancements in machine learning capabilities have allowed it to see widespread adoption for tasks such as object detection, image classification, and anomaly detection. However, despite their promise, a limitation lies in the fact that a network's performance quality is based on the data which it receives. A well-trained network will still have poor performance if the subsequent data supplied to it contains artifacts, out of focus regions, or other visual distortions. Under normal circumstances, images of the same scene captured from differing points of focus, angles, or modalities must be separately analysed by the network, despite possibly containing overlapping information such as in the case of images of the same scene captured from different angles, or irrelevant information such as images captured from infrared sensors which can capture thermal information well but not topographical details. This factor can potentially add significantly to the computational time and resources required to utilize the network without providing any additional benefit. In this study, we plan to explore using image fusion techniques to assemble multiple images of the same scene into a single image that retains the most salient key features of the individual source images while discarding overlapping or irrelevant data that does not provide any benefit to the network. Utilizing this image fusion step before inputting a dataset into the network, the number of images would be significantly reduced with the potential to improve the classification performance accuracy by enhancing images while discarding irrelevant and overlapping regions.

Design and Implementation of Side-Type Finger Vein Recognizer (측면형 지정맥 인식기 설계 및 구현)

  • Kim, Kyeong-Rae;Choi, Hong-Rak;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.159-168
    • /
    • 2021
  • As the information age enters, the use of biometrics using the body is gradually increasing because it is very important to accurately recognize and authenticate each individual's identity for information protection. Among them, finger vein authentication technology is receiving a lot of attention because it is difficult to forge and demodulate, so it has high security, high precision, and easy user acceptance. However, the accuracy may be degraded depending on the algorithm for identification or the surrounding light environment. In this paper, we designed and manufactured a side-type finger vein recognizer that is highly versatile among finger vein measuring devices, and authenticated using the deep learning model of DenseNet-201 for high accuracy and recognition rate. The performance of finger vein authentication technology according to the influence of the infrared light source used and the surrounding visible light was analyzed through simulation. The simulations used data from MMCBNU_6000 of Jeonbuk National University and finger vein images taken directly were used, and the performance were compared and analyzed using the EER.

Comparison of online video(OTT) content production technology based on artificial intelligence customized recommendation service (인공지능 맞춤 추천서비스 기반 온라인 동영상(OTT) 콘텐츠 제작 기술 비교)

  • CHUN, Sanghun;SHIN, Seoung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.99-105
    • /
    • 2021
  • In addition to the OTT video production service represented by Nexflix and YouTube, a personalized recommendation system for content with artificial intelligence has become common. YouTube's personalized recommendation service system consists of two neural networks, one neural network consisting of a recommendation candidate generation model and the other consisting of a ranking network. Netflix's video recommendation system consists of two data classification systems, divided into content-based filtering and collaborative filtering. As the online platform-led content production is activated by the Corona Pandemic, the field of virtual influencers using artificial intelligence is emerging. Virtual influencers are produced with GAN (Generative Adversarial Networks) artificial intelligence, and are unsupervised learning algorithms in which two opposing systems compete with each other. This study also researched the possibility of developing AI platform based on individual recommendation and virtual influencer (metabus) as a core content of OTT in the future.

A case study on the application of process abnormal detection process using big data in smart factory (Smart Factory Big Data를 활용한 공정 이상 탐지 프로세스 적용 사례 연구)

  • Nam, Hyunwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.1
    • /
    • pp.99-114
    • /
    • 2021
  • With the Fourth Industrial Revolution based on new technology, the semiconductor manufacturing industry researches various analysis methods such as detecting process abnormalities and predicting yield based on equipment sensor data generated in the manufacturing process. The semiconductor manufacturing process consists of hundreds of processes and thousands of measurement processes associated with them, each of which has properties that cannot be defined by chemical or physical equations. In the individual measurement process, the actual measurement ratio does not exceed 0.1% to 5% of the target product, and it cannot be kept constant for each measurement point. For this reason, efforts are being made to determine whether to manage by using equipment sensor data that can indirectly determine the normal state of each step of the process. In this study, the Functional Data Analysis (FDA) was proposed to define a process abnormality detection process based on equipment sensor data and compensate for the disadvantages of the currently applied statistics-based diagnosis method. Anomaly detection accuracy was compared using machine learning on actual field case data, and its effectiveness was verified.

Converged Study of Perceived Parental Autonomy Support, Growth Mindset, Grit, and Help-Seeking Behaviors Of High-School Students (고등학생의 지각된 부모의 자율성지지, 성장신념, 그릿, 회피적 도움추구행동에 대한 융합적 연구)

  • Ha, Jeong-Hye;Han, Cheon-woo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.6
    • /
    • pp.161-171
    • /
    • 2021
  • The main purpose of this study was to investigate structural associates among high school students' perceived parental autonomy support, growth mindset, grit and avoidant help-seeking behaviors. There were 419 high school students participated for this study, and their perceived parental autonomy support, growth mindset, girt and avoidant help-seeking behaviors were collected through on-line survey. Descriptive analyses, Pearson correlation analyses, Structural equation modeling and Boostrapping analyses were performed to explore those relations through SPSS 25.0 and Mplus 8.2. First of all, as the result, it was found that the perceived parental autonomy support had positive effects on growth mindset and grit. Second, the growth mindset worked as a negative mediator for the association between perceived parental autonomy support and avoidant help-seeking behaviors. The results suggested that we should consider not only relations with parents but also individual growth mindset to increase high school students' self-regulated learning. Also, theoretical and practical implications were discussed.

The Nature of a Method Course for Prospective Secondary Mathematics Teachers

  • Kim, Seong-A;Lee, Sun Hee
    • Research in Mathematical Education
    • /
    • v.23 no.4
    • /
    • pp.235-254
    • /
    • 2020
  • Through this study, we aimed to capture the nature of a mathematics method course, called "the Curriculum Development and Teaching Methods in Mathematics Education" which is a pedagogy course for teaching for secondary school mathematics taught at a university located in a south eastern part of South Korea. The research participants include three junior students who took the methods course and a local high school math teacher with two professors. The research has three parts. First, we designed a method course to prepare the junior or senior students for a teaching practicum. The individual students gave a mini lecture about a secondary mathematical topic as a course requirement. Second, the three students watched a classroom video-clip of the high school teacher and analyzed his instruction before the actual classroom visits. Furthermore, by "Let's Learn" program for students, the course was associated with a local community through the students and so that they could visit the teacher's classroom three times to observe his math classroom teaching. The students discussed the difference between their own mini lectures and the actual math classroom teaching to develop an understanding of what it entails to teach an actual math class. Third, the first author supervised the students' activities in the program including their report for it to bring out their findings to the class of the method course. We found out this method course provided the students with the experience of various aspects of actual math lesson as well as learning theories about the pedagogy for teaching for secondary school mathematics. We conclude that this course gives a model for the method course in mathematics education for secondary school mathematics.

Establishment Plan on Personalized Training Model for Fostering AI Integrated Human Resource: Focusing on the Ministry of Employment and Labor's STEP as a Public Education and Training Platform (AI 융합형 인재양성을 위한 학습자 맞춤형 훈련프로그램 모델 수립 방안: 고용노동부의 STEP을 중심으로)

  • Rim, Kyung-Hwa;Shin, Jung-min;Lee, Doo-wan
    • Journal of Practical Engineering Education
    • /
    • v.12 no.2
    • /
    • pp.339-351
    • /
    • 2020
  • In response to changes in Fourth Industrial Revolution in recent years, the field of education has focused on development of the human resources in the areas of artificial intelligence (AI: Artificial Intelligence) and industrial robot. Due to particular interest in these areas, the importance of developing integrated human resources equipped with artificial intelligence technology is emphasized in higher education and vocational competence development. In regards to rapid changing environment, this study created a program "Fostering personalized AI integrated human resource" and established an operational model correspond to latest personalized education trend. The established operational model was conducted twice using Delphi survey with experts in AI and innovative education in order to verify the suitability of program's basic structure, training process, and the sub-components of the operational strategy. The final training model was applied to the online vocational training platform (STEP) and a plan was proposed to establish a personalized training model to foster an AI integrated competent individual.

Convergence Influence of Clinical Physical Therapist's Attitude toward Work Environment and Professionalization on Job Satisfaction (임상 물리치료사의 업무환경 및 전문성 제도화에 대한 태도가 직업만족도에 미치는 융복합적 영향)

  • Ro, Hyo-Lyun;Yoo, Hee-Sang
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.3
    • /
    • pp.43-52
    • /
    • 2021
  • This study investigated the influence of clinical physical therapist's perception of their work environment and their attitude toward professionalization on individual job satisfaction. This study is a cross-sectional survey of clinical physical therapists 356 working in hospital, and utilized a structured questionnaire. As a result of this study, in their twenties, women, physical therapist with low clinical experience, and physical therapists working at hospital level showed low job satisfaction. Most of the physical therapists said that they needed a system for professionalism, and the lower the job satisfaction was, the higher the attitude toward the necessity of introducing a professional system. The variables affecting job satisfaction were academic background and annual salary. Therefore, in order to improve the job satisfaction of physical therapists, improvement of salary and learning for professionalism played an important role in improving job satisfaction. Self-development and job specialization through the introduction of a system for equipping expertise appear to be important to improve the job satisfaction.

An Artificial Neural Network-Based Drug Proarrhythmia Assessment Using Electrophysiological Characteristics of Cardiomyocytes (심근 세포의 전기생리학적 특징을 이용한 인공 신경망 기반 약물의 심장독성 평가)

  • Yoo, Yedam;Jeong, Da Un;Marcellinus, Aroli;Lim, Ki Moo
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.287-294
    • /
    • 2021
  • Cardiotoxicity assessment of all drugs has been performed according to the ICH guidelines since 2005. Non-clinical evaluation S7B has focused on the hERG assay, which has a low specificity problem. The comprehensive in vitro proarrhythmia assay (CiPA) project was initiated to correct this problem, which presented a model for classifying the Torsade de pointes (TdP)-induced risk of drugs as biomarkers calculated through an in silico ventricular model. In this study, we propose a TdP-induced risk group classifier of artificial neural network (ANN)-based. The model was trained with 12 drugs and tested with 16 drugs. The ANN model was performed according to nine features, seven features, five features as an individual ANN model input, and the model with the highest performance was selected and compared with the classification performance of the qNet input logistic regression model. When the five features model was used, the results were AUC 0.93 in the high-risk group, AUC 0.73 in the intermediate-risk group, and 0.92 in the low-risk group. The model's performance using qNet was lower than the ANN model in the high-risk group by 17.6% and in the low-risk group by 29.5%. This study was able to express performance in the three risk groups, and it is a model that solved the problem of low specificity, which is the problem of hERG assay.

Concept and Characteristics of Intelligent Science Lab (지능형 과학실의 개념과 특징)

  • Hong, Oksu;Kim, Kyoung Mi;Lee, Jae Young;Kim, Yool
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.2
    • /
    • pp.177-184
    • /
    • 2022
  • This article aims to explain the concept and characteristics of the 'Intelligent Science Lab', which is being promoted nationwide in Korea since 2021. The Korean Ministry of Education creates a master plan containing a vision for science education every five years. The most recently announced '4th Master plan for science education (2020-2024)' emphasizes the policy of setting up an 'intelligent science lab' in all elementary and secondary schools as an online and offline space for scientific inquiry using advanced technologies, such as Internet of Things and Augmented and Virtual Reality. The 'Intelligent Science Lab' project is being pursued in two main directions: (1) developing an online platform named 'Intelligent Science Lab-ON' that supports science inquiry classes, and (2) building a science lab space in schools that encourages active student participation while utilizing the online platform. This article presents the key features of the 'Intelligent Science Lab-ON' and the characteristics of intelligent science lab spaces newly built in schools. Furthermore, it introduces inquiry-based science learning programs developed for intelligent science labs. These programs include scientific inquiry activities in which students generate and collect data ('data generation' type), utilize datasets provided by the online platform ('data utilization' type), or utilize open and public data sources ('open data source' type). The Intelligent Science Lab project is expected to not only encourage students to engage in scientific inquiry that solves individual and social problems based on real data, but also contribute to presenting a model of online and offline linked scientific inquiry lessons required in the post-COVID-19 era.