• Title/Summary/Keyword: individual: NGC

Search Result 68, Processing Time 0.024 seconds

VARIABLE STARS IN THE REGION OF THE OPEN CLUSTER NGC 1039 (M34) (산개성단 NGC 1039(M34) 영역의 변광성)

  • JEON, YOUNG-BEOM;PARK, YOON-HO;LEE, SANG-MIN;LEE, UIRYEOL;KIM, DONGHYEON;JANG, HYEEUN;CHO, SUNGYOON
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.3
    • /
    • pp.821-832
    • /
    • 2015
  • As a part of the short-period variability survey (SPVS) at Bohyunsan Optical Astronomy Observatory, we obtained time-series BV CCD images in the region of the open cluster NGC 1039 (M34). The observations were performed for 22 nights from July 29, 2008 to September 26, 2010. We also made LOAO observations for 10 days from September 18, 2009 to October 30, 2010 to confirm the small variabilties of ${\delta}$ Scuti-type variable stars. In this paper we presented the observational properties of 28 variable stars found in the region. They are seven ${\delta}$ Scuti-type variable stars, two ${\gamma}$ Doradus-type variable stars, four-teen eclipsing binary stars and five semi-long periodic or slow irregular variables, respectively. Only three variables were listed in the GCVS and the rest are newly discovered ones. We have performed multiple-frequency analysis to determine pulsation frequencies of the ${\delta}$ Scuti-type and ${\gamma}$ Doradus-type variable stars, using the discrete Fourier transform and linear least-square fitting methods. We also have derived the periods and amplitudes of 12 eclipsing binaries from the phase fitting method, and presented the light curves of all variable stars.

PMS EVOLUTION MODEL GRIDS AND THE INITIAL MASS FUNCTION

  • PARK BYEONG-GON;SUNG HWANKYUNG;KANG YONG HEE
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.4
    • /
    • pp.197-208
    • /
    • 2002
  • Five contemporary pre-main sequence (PMS) evolution model grids are compared with the photo-metric data for a nearly complete sample of low-mass members in NGC 2264. From amongst the grids compared, the models of Baraffe et al. (1998) prove to be the most reliable in mass-age distribution. To overcome the limited mass range of the models of Baraffe et al. we derived a simple transformation relation between the mass of a PMS star from Swenson et al. (1994) and that from Baraffe et al., and applied it to the PMS stars in NGC 2264 and the Orion nebula cluster (ONC). The resulting initial mass function (IMF) of the ONC shows that the previous interpretation of the IMF is not a real feature, but an artifact caused by the evolution models adopted. The IMFs of both clusters are in a good agreement with the IMF of the field stars in the solar neighborhood. This result supports the idea proposed by Lada, Strom, & Myers (1993) that the field stars originate from the stars that are formed in clusters and spread out as a result of dynamical dissociation. Nevertheless, the IMFs of OB associations and young open clusters show diverse behavior. For the low-mass regime, the current observations suffer from difficulties in membership assignment and sample incompleteness. From this, we conclude that a more thorough study of young open clusters is necessary in order to make any definite conclusions on the existence of a universal IMF.

Gas dynamics and star formation in NGC 6822

  • Park, Hye-Jin;Oh, Se-Heon;Wang, Jing;Zheng, Yun;Zhang, Hong-Xin;de Blok, W.J.G.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.70.2-71
    • /
    • 2021
  • We examine gas kinematics and star formation activities of NGC 6822, a gas-rich dwarf irregular galaxy in the Local Group at a distance of ~490 kpc. We perform profile decomposition of all the line-of-sight (LOS) HI velocity profiles of the high-resolution (42.4" × 12" spatial; 1.6 km/s spectral) HI data cube of the galaxy, taken with the Australian Telescope Compact Array (ATCA). To this end, we use a novel tool based on Bayesian Markov Chain Monte Carlo (MCMC) techniques, the so-called BAYGAUD, which allows us to decompose a velocity profile into an optimal number of Gaussian components in a quantitative manner. We group all the decomposed components into bulk-narrow, bulk-broad, and non-bulk gas components classified with respect to their velocity dispersions and the amounts of velocity offset from the global kinematics, respectively. Using the surface densities and velocity dispersions of the kinematically decomposed HI gas maps together with the rotation curve of NGC 6822, we derive Toomre-Q parameters for individual regions of the galaxy which quantify the level of local gravitational instability of the gaseous disk. We also measure the local star formation rate (SFR) of the corresponding regions in the galaxy by combining GALEX Far-ultraviolet (FUV) and WISE 22㎛ images. We then relate the gas and SFR surface densities in order to investigate the local Kennicutt-Schmidt (K-S) law of gravitationally unstable regions which are selected from the Toomre Q analysis. Of the three groups, the bulk-narrow, bulk-broad and non-bulk gas components, we find that the lower Toomre-Q values the bulk-narrow gas components have, the more consistent with the linear extension of the K-S law derived from molecular hydrogen (H2) observations.

  • PDF

TIME-SERIES PHOTOMETRY OF VARIABLE STARS IN THE GLOBULAR CLUSTER NGC 288

  • Lee, Dong-Joo;Koo, Jae-Rim;Hong, Kyeongsoo;Kim, Seung-Lee;Lee, Jae Woo;Lee, Chung-Uk;Jeon, Young-Beom;Kim, Yun-Hak;Lim, Beomdu;Ryu, Yoon-Hyun;Cha, Sang-Mok;Lee, Yongseok;Kim, Dong-Jin;Park, Byeong-Gon;Kim, Chun-Hwey
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.6
    • /
    • pp.295-306
    • /
    • 2016
  • We present the results of BV time-series photometry of the globular cluster NGC 288. Observations were carried out to search for variable stars using the Korea Microlensing Telescope Network (KMTNet) 1.6-m telescopes and a 4k pre-science CCD camera during a test observation from August to December, 2014. We found a new SX Phe star and confirmed twelve previously known variable stars in NGC 288. For the semi-regular variable star V1, we newly determined a period of 37.3 days from light curves spanning 137 days. The light-curve solution of the eclipsing binary V10 indicates that the system is probably a detached system. The pulsation properties of nine SX Phe stars were examined by applying multiple frequency analysis to their light curves. We derived a new Period-Luminosity (P-L) relation, ${\langle}M_V{\rangle}=-2.476({\pm}0.300){\log}P-0.354({\pm}0.385)$, from six SX Phe stars showing the fundamental mode. Additionally, the period ratios of three SX Phe stars that probably have a double-radial mode were investigated; $P_{FO}/P_F=0.779$ for V5, $P_{TO}/P_{FO}=0.685$ for V9, $P_{SO}/P_{FO}=0.811$ for V11. This paper is the first contribution in a series assessing the detections and properties of variable stars in six southern globular clusters with the KMTNet system.

RELATIVE AGE DIFFERENCE BETWEEN THE METAL-POOR GLOBULAR CLUSTERS M53 AND M92

  • CHO, DONG-HWAN;SUNG, HYUN-IL;LEE, SANG-GAK;YOON, TAE SEOG
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.5
    • /
    • pp.175-192
    • /
    • 2016
  • CCD photometric observations of the globular cluster (GC), M53 (NGC 5024), are performed using the 1.8 m telescope at the Bohyunsan Optical Astronomy Observatory in Korea on the same nights (2002 April and 2003 May) as the observations of the GC M92 (NGC 6341) reported by Cho and Lee using the same instrumental setup. The data for M53 is reduced using the same method as used for M92 by Cho and Lee, including preprocessing, point-spread function fitting photometry, and standardization etc. Therefore, M53 and M92 are on the same photometric system defined by Landolt, and the photometry of M53 and M92 is tied together as closely as possible. After complete photometric reduction, the V versus B − V , V versus V − I, and V versus B − I color-magnitude diagrams (CMDs) of M53 are produced to derive the relative ages of M53 and M92 and derive the various characteristics of its CMDs in future analysis. From the present analysis, the relative ages of M53 and M92 are derived using the Δ(B − V ) method reported by VandenBerg et al. The relative age of M53 is found to be 1.6 ± 0.85 Gyr younger than that of M92 if the absolute age of M92 is taken to be 14 Gyr. This relative age difference between M53 and M92 causes slight differences in the horizontal-branch morphology of these two GCs.

DISCOVERY OF WHITE DWARFS IN THE GLOBULAR CLUSTERS M13 AND M22 USING HST ACS PHOTOMETRIC DATA

  • CHO, DONG-HWAN;YOON, TAE SEOG;LEE, SANG-GAK;Sung, HYUN-IL
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.6
    • /
    • pp.333-341
    • /
    • 2015
  • A search for hot and bright white dwarfs (WDs) in the Milky Way globular clusters M13 (NGC 6205) and M22 (NGC 6656) is carried out using the deep and homogeneous V I photometric catalog of Anderson et al. and and Sarajedini et al., based on data taken with the ACS/WFC aboard the Hubble Space Telescope (HST). V versus V − I color-magnitude diagrams (CMDs) of M13 and M22 are constructed and numerous spurious detections are rejected according to their photometric quality parameters qfit(V ) and qfit(I). In the case of M13, further radial restriction is applied to reject central stars with higher photometric errors due to central crowding. From each resultant V versus V −I CMD, sixteen and thirteen WD candidates are identified in M13 and M22, respectively. They are identified as stellar objects in the accompanying ACS/WFC images and are found to be randomly distributed across the central regions of M13 and M22. Their positions in the CMDs are in the bright part of the DA WD cooling sequences indicating that they are true WDs. In order to confirm their nature, follow-up spectroscopic observations are needed.

ASTROMETRY OF IRAS 22555+6213 WITH VERA: A 3-DIMENSIONAL VIEW OF SOURCES ALONG THE SAME LINE OF SIGHT

  • CHIBUEZE, JAMES O.;SAKANOUE, HIROFUMI;OMODAKA, TOSHIHIRO;HANDA, TOSHIHIRO;NAGAYAMA, TAKUMI;KAMEZAKI, TATSUYA;BURNS, ROSS
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.119-120
    • /
    • 2015
  • We report results of the measurement of the trigonometric parallax of an $H_2O$ maser source in IRAS 22555+6213 with the VLBI Exploration of Radio Astrometry (VERA). The annual parallax was determined to be $0.278{\pm}0.019$ mas, corresponding to a distance of $3.66^{+0.30}_{-0.26}kpc$. Our results confirm that IRAS 22555+6213 is located in the Perseus arm. We computed the peculiar motion of IRAS 22555+6213 to be ($U_{src}$, $V_{src}$, $W_{src}$) = ($0{\pm}1$, $-32{\pm}1$, $9{\pm}1$) $km\;s^{-1}$, where $U_{src}$, $V_{src}$, and $W_{src}$ are directed toward the Galactic center, in the direction of Galactic rotation and toward the Galactic north pole, respectively. IRAS 22555+6213, NGC7538 and Cepheus A lie along the same line of sight, and are within $2^{\circ}$ on the sky. Their parallax distances, with which we derived their absolute position in the Milky Way, show that IRAS 22555+6213 and NGC7538 are associated with the Perseus arm, while Cepheus A is located in the Local arm. We compared the kinematic distances of IRAS 22555+6213 derived with flat and non-flat rotation curve with its parallax distance and found the kinematic distance derived from the non-flat rotation assumption ($-32km\;s^{-1}$ lag) to be consistent with the parallax distance.

IDENTIFICATION OF LUMINOUS WHITE DWARF CANDIDATES IN THE GLOBULAR CLUSTERS M13 AND M22 USING HST ACS PHOTOMETRIC DATA

  • CHO, DONG-HWAN;YOON, TAE SEOG;LEE, SANG-GAK;SUNG, HYUN-IL
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.265-266
    • /
    • 2015
  • A search for luminous white dwarfs (WDs) in several nearby Galactic globular clusters (GCs) was carried out using the deep and homogeneous photometric catalog of Galactic GCs taken with the ACS/WFC aboard the Hubble Space Telescope (HST) by Sarajedini et al. and Anderson et al- It resulted in the identification of luminous WD candidates in the GCs M13 (NGC 6205) and M22 (NGC 6656). The purpose of the present study is to identify luminous WDs in the deep and homogeneous V versus V - I color-magnitude diagrams (CMDs) of several nearby Galactic GCs taken with the ACS/WFC aboard the HST. Using photometric data for the GCs M13 and M22 that are now in the public domain, the V versus V - I CMDs of the GCs M13 and M22 were constructed. Many spurious detections in the CMDs were removed using the photometric quality parameters qfit(V) and qfit(I), and a radial restriction was applied to the CMDs to remove the central stars with higher photometric errors due to central crowding. From each resultant V versus V - I CMD of the GCs M13 and M22, a dozen or so luminous WD candidates were identified. They were confirmed as stellar objects in the accompanying ACS/WFC images and their positions in the CMDs were in the bright part of the DA WD cooling curve. Therefore, the luminous WD candidates in the GCs M13 and M22 seem to be true luminous WDs, and spectroscopic observations are needed to confirm their true identity.

THE OOSTERHOFF PERIOD GROUPS AND MULTIPLE POPULATIONS IN GLOBULAR CLUSTERS

  • JANG, SOHEE;LEE, YOUNG-WOOK;JOO, SEOK-JOO;NA, CHONGSAM
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.267-268
    • /
    • 2015
  • One of the long-standing problems in modern astronomy is the curious division of globular clusters (GCs) into two groups, according to the mean period (<$P_{ab}$>) of type ab RR Lyrae variables. In light of the recent discovery of multiple populations in GCs, we suggest a new model explaining the origin of the Sandage period-shift and the difference in mean period of type ab RR Lyrae variables between the two Oosterhoff groups. In our models, the instability strip in the metal-poor group II clusters, such as M15, is populated by second generation stars (G2) with enhanced helium and CNO abundances, while the RR Lyraes in the relatively metal-rich group I clusters like M3 are mostly produced by first generation stars (G1) without these enhancements. This population shift within the instability strip with metallicity can create the observed period-shift between the two groups, since both helium and CNO abundances play a role in increasing the period of RR Lyrae variables. The presence of more metal-rich clusters having Oosterhoff-intermediate characteristics, such as NGC 1851, as well as of most metal-rich clusters having RR Lyraes with the longest periods (group III) can also be reproduced, as more helium-rich third and later generations of stars (G3) penetrate into the instability strip with further increase in metallicity. Therefore, although there are systems where the suggested population shift cannot be a viable explanation, for the most general cases, our models predict that RR Lyraes are produced mostly by G1, G2, and G3, respectively, for the Oosterhoff groups I, II, and III.

A NEW REFERENCING METHOD FOR THE ARRAY ON-THE-FLY OBSERVATION

  • CHUNG EUN JUNG;KIM HYORYOUNG;RHEE MYUNG-HYUN
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.17-22
    • /
    • 2005
  • In this paper, we suggest a new referencing method for the array On-The-Fly(OTF) observations in radio astronomy. To reduce the baseline residual, we have proposed and evaluated a new referencing method which uses the source free regions in the observed frame as references. These new references have small ${\Delta}$t and ${\Delta}$x, the time and position differences between the source and the references, and the systematic problems w~re improved by using this new referencing method. The curved baseline residuals were straightened and the rms was reduced to 17 mK. This new referencing method is expected not only to make possible to take more stable data for the array OTF observation of external galaxies but also to save the observation and data reduction time.