• Title/Summary/Keyword: indium doping

Search Result 72, Processing Time 0.02 seconds

Structural and Electrical Properties of Fluorine-doped Zinc Tin Oxide Thin Films Prepared by Radio-Frequency Magnetron Sputtering

  • Pandey, Rina;Cho, Se Hee;Hwang, Do Kyung;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.335-335
    • /
    • 2014
  • Over the past several years, transparent conducting oxides have been extensively studied in order to replace indium tin oxide (ITO). Here we report on fluorine doped zinc tin oxide (FZTO) films deposited on glass substrates by radio-frequency (RF) magnetron sputtering using a 30 wt% ZnO with 70 wt% SnO2 ceramic targets. The F-doping was carried out by introducing a mixed gas of pure Ar, CF4, and O2 forming gas into the sputtering chamber while sputtering ZTO target. Annealing temperature affects the structural, electrical and optical properties of FZTO thin films. All the as-deposited FZTO films grown at room temperature are found to be amorphous because of the immiscibility of SnO2 and ZnO. Even after the as-deposited FZTO films were annealed from $300{\sim}500^{\circ}C$, there were no significant changes. However, when the sample is annealed temperature up to $600^{\circ}C$, two distinct diffraction peaks appear in XRD spectra at $2{\Theta}=34.0^{\circ}$ and $52.02^{\circ}$, respectively, which correspond to the (101) and (211) planes of rutile phase SnO2. FZTO thin film annealed at $600^{\circ}C$ resulted in decrease of resistivity $5.47{\times}10^{-3}{\Omega}cm$, carrier concentration ~1019 cm-3, mobility~20 cm2 V-1s-1 and increase of optical band gap from 3.41 to 3.60 eV with increasing the annealing temperatures and well explained by Burstein-Moss effect. Change of work function with the annealing temperature was obtained by ultraviolet photoemission spectroscopy. The increase of annealing temperature leads to increase of work function from ${\phi}=3.80eV$ (as-deposited FZTO) to ${\phi}=4.10eV$ ($600^{\circ}C$ annealed FZTO) which are quite smaller than 4.62 eV for Al-ZnO and 4.74 eV for SnO2. Through X-ray photoelectron spectroscopy, incorporation of F atoms was found at around the binding energy of 684.28 eV in the as-deposited and annealed FZTO up to 400oC, but can't be observed in the annealed FZTO at 500oC. This result indicates that F atoms in FZTO films are loosely bound or probably located in the interstitial sites instead of substitutional sites and thus easily diffused into the vacuum from the films by thermal annealing. The optical transmittance of FZTO films was higher than 80% in all specimens and 2-3% higher than ZTO films. FZTO is a possible potential transparent conducting oxide (TCO) alternative for application in optoelectronics.

  • PDF

Preparation of pseudo n-type Polyaniline and Evaluation of Electrochemical Properties (가상 n형 폴리아닐린의 제조 및 전기화학적 특성평가)

  • 김래현;최선용;정건용
    • Membrane Journal
    • /
    • v.13 no.3
    • /
    • pp.162-173
    • /
    • 2003
  • The pseudo n-type polyaniline was prepared by doping of camphorsulfonic acid(CSA) and dodecylbenzenesulfonic acid(DBSA) as the dopants in solvent of N-methyl-2-pyrrolidinone(NMP). The dopants in polymer structure was qualitatively analyzed using FT-IR. The influence on electrochemical properties with dopant concentration of PANI film were investigated. The electrochemical characteristics of the n-type PANI electrode that coated on ITO were evaluated by cyclic voltammetry(CV) and AC impedance method. The prepared PANI were confirmed as n-type PANI from FT-IR and CV. The charge transfer resistance of film on PANI/CSA electrode were measured as 1.14{\sim}1.09k{\mu}$by AC impedance. The charge transfer resistance of PANI/DBSA electrode decreased with increasing the mole ratio of DBSA as 27.73{\sim}8.37 k{\mu}$. The double layer capacitance of PANI/CSA electrode was showed almost constant value as $13.47{\sim}14.59 {\mu}F$ and that of PANI/DBSA electrode increased with increasing mole ratio of DBSA from 0.49 to $1.20 {\mu}F$.