• 제목/요약/키워드: indicial function

검색결과 7건 처리시간 0.019초

A parametric study of indicial function models in bridge deck aeroelasticity

  • Borri, C.;Costa, C.
    • Wind and Structures
    • /
    • 제7권6호
    • /
    • pp.405-420
    • /
    • 2004
  • In common approaches, bridge dynamics under wind action is analyzed by modeling the interaction between fluid and structure by means of transient wind loads acting over the structure itself. Amid various possible manners to describe such types of loads, a representation based on families of 'indicial functions' is adopted here. The aim is to investigate its flexibility to capture the main features of wind-bridge interaction. A set of coefficients is involved in indicial functions. The values that one may attribute to them suffer uncertainties coming from experimental errors affecting data. Here, the sensitivity of a 2-DOF schematic model to the variations of these coefficients is investigated at fixed values of dynamic derivatives and for various types of indicial functions. It is shown how parameter variations influence phase portraits.

CFD에 의한 사각단면의 플러터계수 산출 (Evaluation of Rectangular Section Flutter Derivatives by CFD)

  • 민원;이용재
    • 한국강구조학회 논문집
    • /
    • 제15권6호통권67호
    • /
    • pp.693-700
    • /
    • 2003
  • CFD를 이용하여 풍하중을 받는 구조부재의 Indicial 함수를 구하고 이로부터 플러터 계수를 얻는 방법을 제안한다. 이를 위해 유한요소법을 이용한 CFD 프로그램을 개발하고 이것을 사용하여 순간적 영각 변화에 따른 공기력계수의 시간적 변화, 즉 Indicial 함수를 구한다. 이 함수를 Fourier적분하여 플러터 계수를 구한다. 이 방법에서는 유체 속에서 진동하는 물체를 직접 시뮬레이션 하는 대신에 일정한 영각을 갖는 고정된 구조물의 수직력 및 회전력의 시간적 변화만을 구하면 된다. 이 방법의 타당성을 검증하기 위해 단면비가 다른 2개의 직사각 단면에 대해 본 연구에서 개발한 프로그램을 사용하여 플러터 계수를 구하고, 또 풍동실험을 실시하여 같은 단면에 대한 플러터 계수를 구하여 서로 비교하였다. 본 연구결과는 교량의 예비설계 단계에서 효과적으로 사용할 수 있을 것이다.

CFD calculations of indicial lift responses for bluff bodies

  • Turbelin, Gregory;Gibert, Rene Jean
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.245-256
    • /
    • 2002
  • Two-dimensional formulations for wind forces on elongated bodies, such as bridge decks, are reviewed and links with expressions found in two-dimensional airfoil theory are pointed out. The present research focus on indicial lift responses and admittance functions which are commonly used to improve buffeting analysis of bluff bodies. A computational fluid dynamic (CFD) analysis is used to derive these aerodynamic functions for various sections. The numerical procedure is presented and results are discussed which demonstrate that the particular shapes of these functions are strongly dependent on the evolution of the separated flows around the sections at the early stages.

Numerical analysis of a long-span bridge response to tornado-like winds

  • Hao, Jianming;Wu, Teng
    • Wind and Structures
    • /
    • 제31권5호
    • /
    • pp.459-472
    • /
    • 2020
  • This study focused on the non-synoptic, tornado-like wind-induced effects on flexible horizontal structures that are extremely sensitive to winds. More specifically, the nonuniform, intensive vertical wind-velocity and transient natures of tornado events and their effects on the global behavior of a long-span bridge were investigated. In addition to the static part in the modeling of tornado-like wind-induced loads, the motion-induced effects were modeled using the semi-empirical model with a two-dimensional (2-D) indicial response function. Both nonlinear wind-induced static analysis and linear aeroelastic analysis in the time domain were conducted based on a 3-D finite-element model to investigate the bridge performance under the most unfavorable tornado pattern considering wind-structure interactions. The results from the present study highlighted the important effects due to abovementioned tornado natures (i.e., nonuniform, intensive vertical wind-velocity and transient features) on the long-span bridge, and hence may facilitate more appropriate wind design of flexible horizontal structures in the tornado-prone areas.

GA를 이용한 오일쿨러시스템의 최적 PI제어기 설계 (Optimum PI Controller Design for an Oil Cooler System Using GA)

  • 정영미;정석권
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.28-34
    • /
    • 2014
  • This paper deals with optimum PI controller design using genetic algorithm to improve control performance and robustness for an oil cooler system. The optimum PI gain was found to minimize an object function, integrated absolute error, and to satisfy control design specifications such as overshoot and settling time based on practical transfer function of the oil cooler system. The control performance and robustness were investigated by comparing indicial responses and Bode diagram analysis with respect to three kinds of PI gains obtained from different gain decision manners. Moreover, the robustness against to input disturbances, sinusoidal wave form and abrupt single pulse, was evaluated. The computer simulation results showed that the suggested optimum gain can establish desirable control performance and strong robustness with easy design process.

適應制御裝置에 關한 硏究 (A Study of the Adaptive Control System)

  • 하주식;최경삼;김승호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제3권1호
    • /
    • pp.19-31
    • /
    • 1979
  • Recently the adaptive control system, which keeps the control system always optimal by adjusting the control parameters automatically according to the variations of the plant parameters, have become very important in the field of control engineering. The adaptive control systems are usally composed of the plant identification, the decision of the optimal control parameters, and the adjustment of the control parameters. This paper deals with a method of the adaptive control system when PI or PID controller is used in the feed back control system. Its controlled object (the plant) is assumed to be described by the transfer function of $\frac{ke^{-LS}}{1+TS}$ where k, T and L are steady state gain, time constant and pure dead time respectively, and their values are variable in accordance with the change of environmental circumstance. It has been known that a pseudo-random binary signal is quite effective for the measurement of an impulse response of a plant. In adaptive control systems, however, the impulse response itself is not appropriate to determine the control parameters. In this paper, the authors propose a method to estimate directly the parameters of the plant k, T and L by means of the correlation technique using 3 level M-sequence signal as a test signal. The authors also propose a method to determine the optimal parameters of the PI or PID controller in the sense of minimizing the square integral of the control error in the feed back control system, and the values of the optimal parameters are computed numerically for various values of T and L, and the results are examined and compared with those of the conventional methods. Finally the above-mentioned two methods are combined and an algorithm to struct an adaptive control system is suggested. The experiments for the indicial responses by means of both the model of the temperature control system using SCR actuater and the analog simulations have shown good results as expected, and the effectiveness of the proposed method is verified. The M-sequence generator and the time delay circuit, which are manufactured for the experiments, are operated in quite a good condition.

  • PDF

플랫폼의 주기 운동을 고려한 부유식 해상 풍력터빈의 공력 성능 해석 (Aerodynamic Load Analysis of a Floating Offshore Wind Turbine Considering Platform Periodic Motion)

  • 김영진;유동옥;권오준
    • 한국항공우주학회지
    • /
    • 제46권5호
    • /
    • pp.368-375
    • /
    • 2018
  • 본 연구에서는 부유식 플랫폼의 6자유도 방향으로의 주기 운동이 로터 공력 성능에 미치는 영향을 확인하기 위해 부유식 해상 풍력터빈에 대한 공력 해석이 수행되었다. 수치 해석을 위해 블레이드 요소 운동량 방법을 이용하였으며, 유동 박리와 후류 영향에 의한 비정상 공력 효과를 포착하기 위해 인디셜 응답 방법에 기반한 동적 실속 모델을 이용하였다. 로터에 의해 유도되는 내리 흐름은 운동량 이론과 난류 후류 상태에 대한 경험적 모델을 연계하여 계산하였다. heave, sway, surge 방향으로의 병진 운동과 roll, pitch, yaw 방향으로의 회전 운동을 포함한 플랫폼 주기 운동을 고려하였으며, 각각의 모션은 사인함수 형태로 적용되었다. 수치해석을 위한 대상 풍력터빈으로는 NREL 5MW 풍력터빈이 사용되었다. 해석 결과로부터 세 방향 병진 운동 모드 중, surge 운동 시 로터 공력 변화가 상대적으로 크게 나타났으며, 회전 운동 모드의 경우, pitch 운동에 의해 로터 공력이 크게 변화됨을 확인할 수 있었다.