• 제목/요약/키워드: indicator microorganisms

검색결과 82건 처리시간 0.02초

수계환경에서 분변성 오염의 지표로 사용되는 미생물들 (Indicator Microorganisms Used as Fecal Contamination in Aquatic Environments)

  • 이건형
    • 환경생물
    • /
    • 제20권3호
    • /
    • pp.189-196
    • /
    • 2002
  • The direct detection of intestinal pathogens and viruses often requires costly, tedious, and time-consuming procedures. These requirements developed a test to show that the water was contaminated with sewage-borne pathogens by assessing the hygienic quality of water based on indicator microorganisms whose presence indicates that pathogenic microorganisms may also be present. Various groups of microorganisms have been suggested and used as indicator microorganisms. Proposed and commonly used microbial indicators are total coliforms, fecal coliforms, fecal streptococci, Clostridium perfringens, heterotrophic plate count, bacteriophage, and so on. Unfortunately, most, if not all, of these indicators are not ideal because of the sensitivity and resistance to environment stresses and disinfection. However, the development of gene probes and PCR technology may give hope for the discovery of rapid and simple methods toy detecting small number of fecal pathogens in various environments.

합류식 하수관거 월류수의 지표미생물 배출 특성 (Discharge Characteristics of the Indicator Microorganisms of Combined Sewer Overflows)

  • 김건하
    • 상하수도학회지
    • /
    • 제20권4호
    • /
    • pp.627-635
    • /
    • 2006
  • Combined sewer overflow (CSOs) is a primary diffuse source degrading water quality of urban streams. In this study, CSOs caused by 5 different rainfall events at an urban watershed located in Daejeon city were monitored for the indicator microorganism concentrations. Event mean concentration (EMC) of the indicator microorganisms were: total coliform = $2.46{\times}10^6CFU/100mL$; fecal coliform = $1.01{\times}10^6CFU/100mL$; E.coli = $5.20{\times}10^5CFU/100mL$; and Fecal Streptococci = $6.08{\times}10^5CFU/100mL$. In addition, coliform concentrations were well correlated with suspended solid concentrations and the first flush effects were identified. Settling tests were carried out to estimate removal rate of indicator organisms by sedimentation from CSOs. As microorganisms are discharged in association with suspended solid, ten minutes of settlement can lower 44% of indicator microorganism leading.

용수 재이용을 위한 하수처리수 관개 후 논에서의 지표성 미생물의 거동 (Indicator microorganisms concentrations change after irrigation of wastewater treatment effluent in paddy field for water reuse)

  • 정광욱;윤춘경
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2003년도 학술발표논문집
    • /
    • pp.583-586
    • /
    • 2003
  • The objective of this research was to examine the significance of change to indicator microorganisms (TC, FC, and E. coli) in the paddy field and repair of UV disinfected secondary effluent. Average concentrations of Microorganisms were maintained by more than about 1,000 MPN/100mL in paddy field after irrigation. Microorganism repair was evaluated in relation to UV dose in photoreactivating light and dark. In addition, a significant inverse relationship was found between UV dose and repair of indicator microorganisms when the research of wastewater was conducted in the condition of low and high UV dose.

  • PDF

도시지역 점원, 비점원에서 유출되는 병원균 지표미생물의 사멸률 (Mortality Rates of Pathogen Indicator Microorganisms Discharged from Point and Non-point Sources in Urban Area)

  • 김건하
    • 한국물환경학회지
    • /
    • 제22권6호
    • /
    • pp.1075-1081
    • /
    • 2006
  • In this research, mortality rates of pathogen indicator microorganisms discharged from various point sources and diffuse sources in urban area were measured. Water samples were taken at domestic sewer, combined sewer overflow, effluent from a wastewater treatment plant, urban river, and sediment of an urban river. Mortality rates of indicator microorganisms in domestic sewer estimated by assuming the first order kinetics at $20^{\circ}C$ were as follows: total coliform = 0.092/day, fecal coliform = 0.185/day, E. coli = 0.252/day, and fecal streptococci = 0.281/day. Sensitivity of mortality rates of total coliform on temperature was estimated as $K_{temp}=K_{20}{\times}1.162^{(temp-20)}$ for the range of $10-20^{\circ}C$. Mortality rates due to sunlight were measured as 1.22-1.59/day while mortality rate due to settling for 40 min were estimated as $9.21{\times}10^3-20.0{\times}10^3/day$.

재처리수 관개후 지표미생물의 농도변화 조사 (Investigation of Indicator Microorganism Concentrations after Reclaimed Water Irrigation in Paddy Rice Pots)

  • 정광욱;윤춘경;장재호;김형철;전지홍
    • 한국농공학회논문집
    • /
    • 제47권4호
    • /
    • pp.75-85
    • /
    • 2005
  • A study was performed to examine the effects of reclaimed-water irrigation on microorganism con-centration in ponded-water of paddy rice plots. Several treatments were used and each one was triplicated to evaluate the change of indicator microorganisms (total coliforms (TC), fecal coliforms FC), and E. coli) concentrations in 2003 and 2004 growing seasons. Their concentrations increased significantly right after irrigation, but decreased about $45\%$ in 24 hours. It implies that agricultural activities such as plowing and fertilizing should be practiced one or two days after irrigation considering health-risks. Treatments with UV-disinfected water irrigation demonstrated significantly lower concentrations than others including control plots where natural surface water was irrigated. The monitoring results from actual paddy rice fields and experimental paddy plots showed that concentrations of indicator microorganisms ranged from $10^2\;to\;10^5$ MPN/100mL. A comprehensive assessment of existing agricultural practices and a thorough monitoring in the field as well as treatment-plots are recommended to make more realistic national guidelines more applicable. UV-disinfected water irrigation reduced microorganism concentrations in paddy fields down to below the concentration of conventional paddy rice culture, and is thought to be an effective and feasible measure fur agricultural reuse of secondary effluent.

유기농 시설엽채류의 유해미생물 오염평가 (Analysis of Pathogenic Microorganism's Contamination on Organic Leafy Vegetables at Greenhouse in Korea)

  • 오소영;남기웅;윤덕훈
    • 한국식품위생안전성학회지
    • /
    • 제33권1호
    • /
    • pp.31-37
    • /
    • 2018
  • 본 연구는 시설엽채류에서 재배농법별 미생물학적 안전성을 평가하기 위해서 깻잎과 상추를 대상으로 수행하였다. 유기농 및 관행 농가로부터 생산 및 수확 단계에서 식물체, 수확장갑, 수확비구니, 토양피복재 등으로부터 총 2,304개의 시료를 채취하여 Total aerobic bacteria, Coliforms, E.coli, Environmental Listeria, Yeast & mold 등의 위생지표세균과 Staphylococcus aureus, Bacillus cereus, Salmonella spp., Clostridium spp., L. monocytogenes등의 병원성미생물을 분석하였다. 시설엽채류의 생산과정에서는 재배농법에 상관없이 위행지표세균은 검출되지 않거나 $3.4\;Log\;CFU/100cm^2$ 이하로 검출되었다. 유기농법으로 생산되는 깻잎과 상추에서 B. cereus와 S. aureus가 0.22~1.55 Log CFU/g로 조사되었고, 관행농법에서는 S. aureus는 검출되지 않았으며 B. cereus는 0.42~2.19 Log CFU/g으로 조사되었으나 통계적 유의차는 없었다. 수확도구 및 멀칭필름에서도 재배농법과는 관계없이 위생지표세균과 유해균의 오염도는 낮았으며 차이는 없었다. 그러나 수확도구에서의 미생물 오염도가 높아질수록 식물체 표면의 미생물 오염도도 높아지는 정의 상관관계($R^2=0.4526$)가 있었다. 또한 유기농 시설엽채류 생산시 토양 피복시 위생지표세균과 병원성미생물이 검출되지 않거나 피복을 하지 않은 경우에 비하여 낮은 경향을 나타내었다. 본 연구결과, 시설엽채류 생산시 재배농법의 차이보다는 토양피복 및 수확과정의 미생물적 위생관리가 더욱 필요함을 알 수 있었다.

Assessment of the ozonation against pathogenic bacteria in the effluent of the quarantine station

  • Park, Seon Yeong;Kim, Joo Han;Kim, Chang Gyun
    • 한국해양바이오학회지
    • /
    • 제13권1호
    • /
    • pp.10-19
    • /
    • 2021
  • This study investigated how ozone treatment can successfully inactivate pathogenic bacteria in both artificial seawater and effluents discharged from the fishery quarantine station in Pyeongtaek Port, Korea. Vibrio sp. and Streptococcus sp. were initially inoculated into the artificial seawater. All microbes were almost completely inactivated within 10 min and 30 min by injecting 6.4 mg/min and 2.0 mg/min of ozone, respectively. It was discovered that the water storing Pleuronichthys, Pelteobagrus, and Cyprinus imported from China contained the indicator bacteria, Vibrio sp., Enterococcus sp., total coliforms, and heterotrophic microorganisms. Compared to the control, three indicator bacteria were detected at two to six times higher concentrations. The water samples displayed a diverse microbial community, comprising the following four phyla: Bacteroidetes, Proteobacteria, Firmicutes, and Actinobacteria. Almost all indicator bacteria were inactivated in 5 min at 2.0 mg/min of ozonation; comparatively, 92.9%-98.2% of the less heterotrophic microorganisms were deactivated within the same time period. By increasing the dosage to 6.4 mg/min, 100% deactivation was achieved after 10 min. Despite the almost complete inactivation of most indicator bacteria at high doses after 10 min, several bacterial strains belonging to the Proteobacteria have still been found to be resistant under the given operational conditions.

지표미생물을 이용한 시화호 유입수의 수질평가 (Evaluation of Influent Water Quality Using Indicator Microorganisms in Lake Shiwha)

  • 이희태;김희연;박현진;조영은;유소영;이경진;정종선;고광표
    • 한국환경보건학회지
    • /
    • 제34권1호
    • /
    • pp.86-94
    • /
    • 2008
  • Lake Shiwha, an artificial lake located near metropolitan Seoul, offers a unique water environment and has been suspected to have high levels of chemical and microbiological contaminations. Lake Shiwha was originally connected to the sea but currently has four major surface water inputs from agricultural, municipal, industrial areas and in addition an occasional inflow from the sea. The objectives of this study are to investigate the relative contribution of microbial contaminants from each of the inflowing surface waters and to identify appropriate microbial indicator organisms in this unique water environment. We measured the levels of microbial contaminations in the four inflowing surface waters. A number of microbial indicator organisms including total coliform (TC), fecal coliform (FC), E. coli, Enterococci, somatic and male-specific coliphages were analyzed. Bacterial indicator microorganisms were detected and quantified by the $Colilert^{(R)},\;Enterolert^{(R)}$ kit. Surface water (50 l) was sampled by $ViroCap^{TM}\;5"$ cartridge filters and analyzed by the single agar layer method for detecting coliphages. The concentrations of TC, FC, E. coli, and Enterococci were 1543 CFU/100 ml${\sim}1.99{\times}10^6$ CFU/100 ml, 0 CFU/100 ml${\sim}202$ CFU/100ml, 0 CFU/100 ml${\sim}1.80{\sim}10^5$ CFU/100ml, 74 CFU/100 ml${\sim}3408$ CFU/100 ml, respectively. The male-specific and somatic coliphages were detected in three different inflowing surface waters. Isolated E. coli and Enterococci strains were further analyzed by 16s rDNA amplification and subsequent phylogenetic analysis from Jungwang-chun, Ansan-chun, Banwol-chun and penstock of inflowing surface water. Our results indicated that the concentrations of different fecal indicator microorganisms might not be highly correlated with each other. Multiple microbial indicator organisms should be used for monitoring microbial contamination and microbial source tracking methods.

Disinfection and Reactivation of Microorganisms after UV Irradiation for Agricultural Water Reuse of Biofilter Effluent

  • Jung, Kwang-Wook;Yoon, Chun-G.;Hwang, Ha-Sun;Ham, Jong-Hwa
    • 한국농공학회지
    • /
    • 제45권7호
    • /
    • pp.94-106
    • /
    • 2003
  • A pilot study was performed to examine the feasibility of UV disinfection system and the reactivation of indicator microorganisms (TC, FC, E. coli) after UV irradiation for agricultural reuse of reclaimed water. Photoreactivation and dark repair enable UV-inactivated microorganisms to recover and may reduce the efficacy of UV inactivation, which might be drawbacks of the UV disinfection method. The effluent of biofilter for 16-unit apartment house was used as input to the UV disinfection system, and average SS and BOD concentration were 3.8 and 5.7 mg/L, respectively, and the mean level of total coliform was in the range of $1.0\times10^4$ MPN/100mL. UV disinfection was found to be effective and it reduced mean concentration of indicator microorganisms (total coliform, fecal coliform, and E. coli) to less than 100 MPN/100mL within 60s exposure using 17, 25, and 40W lamps. Two UV doses of 6 and 16 mW$\cdot$s/$\textrm{km}^2$ were applied and microorganisms reactivation was monitored under the dark, photoreactivating light, and solar irradiation. Microorganisms reactivation was observed in the UV dose of 6 mW$\cdot$s/$\textrm{km}^2$, and numbers increased up to 5% at the photoreactivating light and 1% at the dark. However, microorganisms were inactivated rather than reactivated at the solar radiation and numbers decreased to non-detectible level about below 2 MPN/100mL in 4 hours. In the case of 16 mW$\cdot$s/$\textrm{km}^2$, microorganism reactivation was not observed indicating that UV dose might affect the reactivation process such as photoreactivation and dark repair. Therefore, concerns associated with microorganism reactivation could be controlled by sufficient UV dose application. Agricultural reuse of reclaimed water might be even less concerned due to exposure to the solar irradiation that could further inactivate microorganisms. The pilot study result is encouraging, however, sanitary concern in water reuse is so critical that more comprehensive investigation is recommended.

아산시 지표미생물의 분포와 Escherichia coli의 항생제 내성에 관한 연구 (A Study of Antimicrobial Resistance in Escherichia coli and the Distribution of Indicator Microorganisms in Asan City)

  • 이근열;김근하;권문주;권혁구;김연희;이장훈
    • 한국환경보건학회지
    • /
    • 제36권3호
    • /
    • pp.229-235
    • /
    • 2010
  • Efforts to evaluate water pollution using indicator microorganisms have been underway for decades, and driven by research on water purity control applications, water quality criteria are growing more and more strict. Furthermore, recent reports indicate that high concentrations of antibiotics are not absorbed, and are present in excrement from animals and humans dosed with unnecessarily high levels of antibiotics. This has emerged as very important issue from the standpoint of being an ecological and health hazard. In this study, water pollution was analyzed through physicochemical and microbiological means, and antibiotic resistance in indicator microorganisms was assessed. In physicochemical analysis, biochemical oxygen demand (BOD)$_5$ and chemical oxygen demand (COD)$_{Mn}$ evaluation showed that pollution by organisms was highest at the G1 location with a high human population, and the DP location which has many livestock-containing households. The indicator organism levels at the G1 location were: Total Coliforms (1205 colony forming units (CFU)/100 ml), Fecal Coliforms (270 CFU/100 ml), Escherichia coli (253 CFU/100 ml) and Fecal Streptococci (210 CFU/100 ml), while for the DP location levels were: Total Coliforms (1480 CFU/100 ml), Fecal Coliforms (438 CFU/100 ml), E. coli (560 CFU/100 ml), and Fecal Streptococci (348 CFU/100 ml). Levels of fecal indicator microorganisms such as Fecal Coliforms, E. coli and Fecal Streptococci were high at all locations in the fall (the period after the rainy season), and the yearly distribution was similar between these organisms. If the number of livestock-containing households was high, almost all strains of E. coli (as distinct from the other indicator organisms) showed resistance to antibiotics, with the degree of resistance varying between areas. E. coli strains from the OY area in particular, which has a high population density, showed strong resistance to AM10 and Va30. While strong antibiotic resistance was observed overall at the DP and OY locations, no resistance was observed at the EB location.