• Title/Summary/Keyword: index tree

Search Result 948, Processing Time 0.064 seconds

SQMR-tree: An Efficient Hybrid Index Structure for Large Spatial Data (SQMR-tree: 대용량 공간 데이타를 위한 효율적인 하이브리드 인덱스 구조)

  • Shin, In-Su;Kim, Joung-Joon;Kang, Hong-Koo;Han, Ki-Joon
    • Spatial Information Research
    • /
    • v.19 no.4
    • /
    • pp.45-54
    • /
    • 2011
  • In this paper, we propose a hybrid index structure, called the SQMR-tree(Spatial Quad MR-tree) that can process spatial data efficiently by combining advantages of the MR-tree and the SQR-tree. The MR-tree is an extended R-tree using a mapping tree to access directly to leaf nodes of the R-tree and the SQR-tree is a combination of the SQ-tree(Spatial Quad-tree) which is an extended Quad-tree to process spatial objects with non-zero area and the R-tree which actually stores spatial objects and are associated with each leaf node of the SQ-tree. The SQMR-tree consists of the SQR-tree as the base structure and the mapping trees associated with each R-tree of the SQR-tree. Therefore, because spatial objects are distributedly inserted into several R-trees and only R-trees intersected with the query area are accessed to process spatial queries like the SQR-tree, the query processing cost of the SQMR-tree can be reduced. Moreover, the search performance of the SQMR-tree is improved by using the mapping trees to access directly to leaf nodes of the R-tree without tree traversal like the MR-tree. Finally, we proved superiority of the SQMR-tree through experiments.

DGR-Tree : An Efficient Index Structure for POI Search in Ubiquitous Location Based Services (DGR-Tree : u-LBS에서 POI의 검색을 위한 효율적인 인덱스 구조)

  • Lee, Deuk-Woo;Kang, Hong-Koo;Lee, Ki-Young;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.3
    • /
    • pp.55-62
    • /
    • 2009
  • Location based Services in the ubiquitous computing environment, namely u-LBS, use very large and skewed spatial objects that are closely related to locational information. It is especially essential to achieve fast search, which is looking for POI(Point of Interest) related to the location of users. This paper examines how to search large and skewed POI efficiently in the u-LBS environment. We propose the Dynamic-level Grid based R-Tree(DGR-Tree), which is an index for point data that can reduce the cost of stationary POI search. DGR-Tree uses both R-Tree as a primary index and Dynamic-level Grid as a secondary index. DGR-Tree is optimized to be suitable for point data and solves the overlapping problem among leaf nodes. Dynamic-level Grid of DGR-Tree is created dynamically according to the density of POI. Each cell in Dynamic-level Grid has a leaf node pointer for direct access with the leaf node of the primary index. Therefore, the index access performance is improved greatly by accessing the leaf node directly through Dynamic-level Grid. We also propose a K-Nearest Neighbor(KNN) algorithm for DGR-Tree, which utilizes Dynamic-level Grid for fast access to candidate cells. The KNN algorithm for DGR-Tree provides the mechanism, which can access directly to cells enclosing given query point and adjacent cells without tree traversal. The KNN algorithm minimizes sorting cost about candidate lists with minimum distance and provides NEB(Non Extensible Boundary), which need not consider the extension of candidate nodes for KNN search.

  • PDF

The T-tree index recovery for distributed main-memory database systems in ATM switching systems (ATM 교환기용 분산 주기억장치 상주 데이터베이스 시스템에서의 T-tree 색인 구조의 회복 기법)

  • 이승선;조완섭;윤용익
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.9
    • /
    • pp.1867-1879
    • /
    • 1997
  • DREAM-S is a distributed main-memory database system for the real-time processing of shared operational datra in ATM switching systems. DREAM-S has a client-server architecture in which only the server has the diskstorage, and provides the T-Tree index structure for efficient accesses to the data. We propose a recovery technique for the T-Tree index structre in DREAM-S. Although main-memory database system offer efficient access performance, the database int he main-memory may be broken when system failure such as database transaction failure or power failure occurs. Therfore, a recovery technique that recovers the database (including index structures) is essential for fault tolerant ATM switching systems. Proposed recovery technique relieves the bottleneck of the server processors disk operations by maintaining the T-Tree index structure only in the main-memory. In addition, fast recovery is guaranteed even in large number of client systems since the T-Tree index structure(s) in each system can be recovered cncurrently.

  • PDF

An Index Structure for Efficiently Handling Dynamic User Preferences and Multidimensional Data (다차원 데이터 및 동적 이용자 선호도를 위한 색인 구조의 연구)

  • Choi, Jong-Hyeok;Yoo, Kwan-Hee;Nasridinov, Aziz
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.7
    • /
    • pp.925-934
    • /
    • 2017
  • R-tree is index structure which is frequently used for handling spatial data. However, if the number of dimensions increases, or if only partial dimensions are used for searching the certain data according to user preference, the time for indexing is greatly increased and the efficiency of the generated R-tree is greatly reduced. Hence, it is not suitable for the multidimensional data, where dimensions are continuously increasing. In this paper, we propose a multidimensional hash index, a new multidimensional index structure based on a hash index. The multidimensional hash index classifies data into buckets of euclidean space through a hash function, and then, when an actual search is requested, generates a hash search tree for effective searching. The generated hash search tree is able to handle user preferences in selected dimensional space. Experimental results show that the proposed method has better indexing performance than R-tree, while maintaining the similar search performance.

Hyper-TH : An Index Mechanism for Real-Time Main Memory Database Systems (Hyper-TH : 실시간 주기억장치 데이터베이스 시스템을 위한 색인기법)

  • 민영수;신재룡;이병엽;유재수
    • The Journal of Information Technology and Database
    • /
    • v.8 no.2
    • /
    • pp.103-114
    • /
    • 2001
  • In this paper, we propose an efficient index mechanism for real-time main memory database systems. Existing main memory index structures based on the tree can effectively support range searches. However, it doesn't guarantee the real-time characteristic because difference between the access time of a node and an average access time can be high. The index structures based on the hash have always a regular random access time on the simple searches and that speed is very fast. However they do not support range searches. To solve such problems, we propose a new index mechanism called Hyper Tree-Hash (Hyper-TH) that combines ECBH (Extendible Chained Bucket Hashing) and T*-tree. ECBH can be dynamically extended and has a very fast access time. T*-tree effectively supports the range searches. We show through our experiments that the proposed mechanism outperforms existing other index structures.

  • PDF

The Development of Climax Index by Analysis of Eco-morphological Characters for Major Deciduous Tree Species

  • Kim, Ji Hong;Chung, Sang Hoon;Lee, Jeong Min;Kim, Se Mi
    • Journal of Forest and Environmental Science
    • /
    • v.28 no.4
    • /
    • pp.199-204
    • /
    • 2012
  • This study was conducted to estimate climax index by eco-morphology for major 36 tree and sub-tree species in natural deciduous forests so as to interpret seral position of each species in the forest community. Fourteen eco-morphological characters which were considered to be associated with successional gradient in the forest were selected for the study. Four levels per character for each species were given on a standardized scale of increasing climax, and the index was computed by the proportion of the sum of total scores, expressed by percent values. With calculated mean value of 54.8 for all indices, Carpinus cordata had the highest index value of 90.5, and Populus davidiana recorded the lowest of 13.2. The most climax group, greater than 70 of the index, contained only 8 species, intermediate group, between 41 to 70 of the index, had 23 species, and the most pioneer group, less than 40 of the index comprised 5 species. The result has noticed that the large number of species would take advantage of most diverse resource and niche in the intermediate stage of the sere in the forest. By cluster analysis all 36 species were subjected to be classified into several species groups which had common similar eco-morphological characteristics. The indices were additionally plotted on the two dimensional graph to recognize the positions related to the light absorption factor and reproduction factor. The climax index of tree and sub-tree species developed by this study could be applied to understand the present status of successional stage on the basis of species composition by the method of summing up the indices. And comparison of forest successional stage among various forest communities could be done by summing up the climax indices of composed species in each community. However, this kind of applied methodology should be limited to the forest of similar species composition and site condition.

Design and Implementation of the dynamic hashing structure for indexing the current positions of moving objects (이동체의 현재 위치 색인을 위한 동적 해슁 구조의 설계 및 구현)

  • 전봉기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1266-1272
    • /
    • 2004
  • Location-Based Services(LBS) give rise to location-dependent queries of which results depend on the positions of moving objects. Because positions of moving objects change continuously, indexes of moving object must perform update operations frequently for keeping the changed position information. Existing spatial index (Grid File, R-Tree, KDB-tree etc.) proposed as index structure to search static data effectively. There are not suitable for index technique of moving object database that position data is changed continuously. In this paper, I propose a dynamic hashing index that insertion/delete costs are low. The dynamic hashing structure is that apply dynamic hashing techniques to combine a hash and a tree to a spatial index. The results of my extensive experiments show the dynamic hashing index outperforms the $R^$ $R^*$-tree and the fixed grid.

Embedded Node Cache Management for Hybrid Storage Systems (하이브리드 저장 시스템을 위한 내장형 노드 캐시 관리)

  • Byun, Si-Woo;Hur, Moon-Haeng;Roh, Chang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.157-159
    • /
    • 2007
  • The conventional hard disk has been the dominant database storage system for over 25 years. Recently, hybrid systems which incorporate the advantages of flash memory into the conventional hard disks are considered to be the next dominant storage systems to support databases for desktops and server computers. Their features are satisfying the requirements like enhanced data I/O, energy consumption and reduced boot time, and they are sufficient to hybrid storage systems as major database storages. However, we need to improve traditional index node management schemes based on B-Tree due to the relatively slow characteristics of hard disk operations, as compared to flash memory. In order to achieve this goal, we propose a new index node management scheme called FNC-Tree. FNC-Tree-based index node management enhanced search and update performance by caching data objects in unused free area of flash leaf nodes to reduce slow hard disk I/Os in index access processes.

  • PDF

Efficient Spatial Index for Mobile Software (모바일 소프트웨어를 위한 효율적인 공간 인덱스)

  • Oh, Byoung-Woo
    • Spatial Information Research
    • /
    • v.16 no.1
    • /
    • pp.113-127
    • /
    • 2008
  • This paper proposes an efficient spatial index, named $AR^*$-tree(Area $R^*$-tree) which is a variant of the $R^*$-tree, for mobile software. A MBR(Minimum Bounding Rectangle) structure of the $AR^*$-tree has additional min and max values of area axis as well as x and y axes. The value of area axis is used to determine the significance of a spatial data. If area of a spatial data is large, then it is significant when drawing a map. To reduce complexity of a map on a small screen of mobile device, only significant spatial data can be found by the $AR^*$-tree. The result of a series of tests indicates that the $AR^*$-tree provides a method for control of readability of a map and guarantees an efficient performance at the same time.

  • PDF

Rend 3D R-tree: An Improved Index Structure in Moving Object Database Based on 3D R-tree (Rend 3D R-tree : 3D R-tree 기반의 이동 객체 데이터베이스 색인구조 연구)

  • Ren XiangChao;Kee-Wook Rim;Nam Ji Yeun;Lee KyungOh
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.878-881
    • /
    • 2008
  • To index the object's trajectory is an important aspect in moving object database management. This paper implements an optimizing index structure named Rend 3D R-tree based on 3D R-Tree. This paper demonstrates the time period update method to reconstruct the MBR for the moving objects in order to decrease the dead space that is produced in the closed time dimension of the 3D R-tree, then a rend method is introduced for indexing both current data and history data. The result of experiments illustrates that given methods outperforms 3D R-Tree and LUR tree in query processes.