• 제목/요약/키워드: indentation test

검색결과 297건 처리시간 0.025초

알루미나-유리 복합체용 글래스의 조성에서 $CeO_2$의 함량변화가 강도에 미치는 영향 (EFFECT OF $CEO_2$ ADDITION IN GLASS COMPOSITION ON THE STRENGTH OF ALUMINA-GLASS COMPOSITES)

  • 이화진;송광엽;강정길
    • 대한치과보철학회지
    • /
    • 제38권5호
    • /
    • pp.595-605
    • /
    • 2000
  • Dental ceramics have good aesthetics, biocompatibility, low thermal conductivity, abrasion resistance, and color stability. However poor resistance to fracture and shrinkage during firing process have been limiting factors in their use, particularly in multiunit ceramic restorations. A new method for making all-ceramic crowns that have high strength and low processing shrinkage has been developed and is referred to as the Vita In-Ceram method. This study was performed to investigate the effect of $CeO_2$ addition in borosilicate glasses on the strength of alumina-glass composites. Porous alumina compacts were prepared by slip casting and sintered at $1,100^{\circ}C$ for 2 hours. Dense composites were made by infiltration of molten glass into partially sintered alumina at $1,140^{\circ}C$ for 4 hours. Specimens were polished sequentially from #800 to #2000 diamond disk. and the final surface finishing on the tensile side was received an additional polishing sequence through $1{\mu}m$ diamond paste. Biaxial flexure test was conducted by using ball-on-three-ball method at a crosshead speed of 0.5mm/min. To examine the microstructural aspect of crack propagation in the alumina-glass composites, Vickers-produced indentation crack was made on the tensile surface at a load of 98.0 N and dwell time of 15 sec, and the radial crack patterns were examined by an optical microscope and a scanning electron microscope. The results obtained were summarized as follows; 1. The porosity rates of partially sintered alumina decreased with the rising of firing temperature. 2. The maximum biaxial flexure strength of 423.5MPa in alumina-glass composites was obtained with an addition of 3 mol% $CeO_2$ in glass composition and strength values showed the aspect of decrease with the increase of $CeO_2$ content. 3 The biaxial flexure strength values of alumina-glass composites were decreased with rising the firing temperature. 4. Observation of the fracture surfaces of alumina-glass composites indicated that the enhancement of strength in alumina-glass composites was due to the frictional or geometrical inter-locking of rough fracture surfaces and ligamentary bridging by intact islands of materials left behind the fracture front.

  • PDF

사용후핵연료 수송용기 충격완충체에 적용되는 발사목과 우레탄 폼의 기계적 특성 및 저속충격특성 평가 연구 (Evaluation of Mechanical Properties and Low-Velocity Impact Characteristics of Balsa-Wood and Urethane-Foam Applied to Impact Limiter of Nuclear Spent Fuel Shipping Cask)

  • 구준성;신광복;최우석
    • 대한기계학회논문집A
    • /
    • 제36권11호
    • /
    • pp.1345-1352
    • /
    • 2012
  • 본 논문의 목적은 사용후핵연료 수송용기 충격완충체의 완충재질로 고려되고 있는 발사목과 우레탄 폼 심재, 그리고 샌드위치 패널에 대한 저속충격거동 및 기계적 특성을 평가하는 것이다. 우레탄 폼은 등방성 재질로써 인장, 압축, 그리고 전단의 기본물성시험을 수행하였으며, 발사목은 서로 다른 직교방향에서 다른 물성을 갖는 이방성 재료이므로 아홉가지 방향에 대한 기계적 특성 평가를 하였다. 충격시험용 심재와 샌드위치 패널 시험편은 충격시험기를 사용하여 세가지 충격에너지 레벨(1J, 3J, 그리고 5J)에 대한 저속충격시험을 수행하였다. 시험 결과, 우레탄 폼과 성장방향을 제외한 발사목은 충격에너지 흡수율, 접촉하중, 그리고 손상영역에서 유사한 거동을 보였으며, 우레탄 폼 심재는 난연성과 비용절약이 우선시 되는 설계에서 완충재질로서 추천될 수 있고, 발사목 심재는 사용후핵연료 수송용기의 경량화를 위한 완충재질로써 우선 고려될 수 있다.

재생 과정이 니켈-티타늄 호선의 물리적 성질과 표면 거칠기에 미치는 영향 (Effects of recycling on the mechanical properties and the surface topography of Nickel-Titanium alloy wires)

  • 이성호;장영일
    • 대한치과교정학회지
    • /
    • 제30권4호
    • /
    • pp.453-465
    • /
    • 2000
  • 본 연구의 목적은 재생된 니켈-티타늄 호전의 인장물성, 표면거칠기와 마찰력의 변화를 조사하여, 임상적으로 니켈티타늄 호선을 재생하여 사용하는 것이 타당한지를 알아보는 것이다. 수종의 니켈-티타늄 호선과 스테인레스 스틸호선을 처리전(T0: 대조군)과 인공타액에 4주간 처리한 군(T1), 그리고 인공타액 처리후 가압증기 멸균소독한 군(T2)으로 구분하여 인장실험과 주사전자현미경, 3D profilogram을 통한 표면거칠기의 변화와 마찰계수의 변화를 관찰하여 다음과 같은 결과를 얻었다. 1. 인장실험을 하여 최대인장강도, 연신율, 탄성계수를 관찰한 결과 모든 니켈-티타늄 호선에서 재생과정 후에 대조군과 유의한 차이를 보이지 않았다(p<0.05). 단 스테인레스 스틸 호선은 재생과정 후에 최대인장강도, 연신율, 탄성계수에서 통계적으로 유의한 변화를 보였다(p<0.05). 2. 주사전자현미경을 통한 관찰에서 재생후에 Sentalloy를 제외한 호선에서 표면의 점부식(pitting)과 압흔(indentation)이 증가하였다. 3. 3D profilogram을 사용하여 관찰한 표면거칠기(Ra와 Rq)의 변화를 살펴보면, 재생과정 후에 Sentalloy를 제외한 NiTi, Optimalloy, 스테인레스 스틸 호선에서 통계적으로 유의하게 표면거칠기가 증가하였다(p<0.05). 4. 재생과정 후에 시행한 마찰력 실험에서는 최대운동마찰계수가 Sentalloy를 제외한 NiTi, Optimalloy, 스테인레스 스틸호선에서 통계적으로 유의하게 증가하였다(p<0.05). NiTi, Optimalloy의 표면거칠기와 마찰계수의 변화는 임상적으로 영향을 미칠 정도는 아니며, 결과적으로 니켈-티타늄 호선을 재생하면, 인장실험시의 물성과 표면거칠기, 마찰계수의 변화가 임상적으로 문제가 없을 것으로 생각된다.

  • PDF

Mechanical behavior and microstructural characterization of different zirconia polycrystals in different thicknesses

  • Arcila, Laura Viviana Calvache;Ramos, Nathalia de Carvalho;Campos, Tiago Moreira Bastos;Dapieve, Kiara Serafini;Valandro, Luiz Felipe;de Melo, Renata Marques;Bottino, Marco Antonio
    • The Journal of Advanced Prosthodontics
    • /
    • 제13권6호
    • /
    • pp.385-395
    • /
    • 2021
  • PURPOSE. To characterize the microstructure of three yttria partially stabilized zirconia ceramics and to compare their hardness, indentation fracture resistance (IFR), biaxial flexural strength (BFS), and fatigue flexural strength. MATERIALS AND METHODS. Disc-shaped specimens were obtained from 3Y-TZP (Vita YZ HT), 4Y-PSZ (Vita YZ ST) and 5Y-PSZ (Vita YZ XT), following the ISO 6872/2015 guidelines for BFS testing (final dimensions of 12 mm in diameter, 0.7 and 1.2 ± 0.1 mm in thicknesses). Energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were performed, and mechanical properties were assessed by Vickers hardness, IFR, quasi-static BFS and fatigue tests. RESULTS. All ceramics showed similar chemical compositions, but mainly differed in the amount of yttria, which was higher as the amount of cubic phase in the diffractogram (5Y-PSZ > 4Y-PSZ > 3Y-TZP). The 4Y- and 5Y-PSZ specimens showed surface defects under SEM, while 3Y-TZP exhibited greater grain uniformity on the surface. 5Y-PSZ and 3Y-TZP presented the highest hardness values, while 3Y-TZP was higher than 4Y- and 5Y-PSZ with regard to the IFR. The 5Y-PSZ specimen (0.7 and 1.2 mm) showed the worst mechanical performance (fatigue BFS and cycles until failure), while 3Y-TZP and 4Y-PSZ presented statistically similar values, higher than 5Y-PSZ for both thicknesses (0.7 and 1.2 mm). Moreover, 3Y-TZP showed the highest (1.2 mm group) and the lowest (0.7 mm group) degradation percentage, and 5Y-PSZ had higher strength degradation than 4Y-PSZ group. CONCLUSION. Despite the microstructural differences, 4Y-PSZ and 3Y-TZP had similar fatigue behavior regardless of thickness. 5Y-PSZ had the lowest mechanical performance.

비파괴 기술을 이용한 대구경 수도용 밸브의 상태평가에 관한 연구 (A study on the condition assessment of large diameter water valves using non-destructive technologies)

  • 이호민;최현용;박수완;오태민;김채민;배철호
    • 상하수도학회지
    • /
    • 제37권4호
    • /
    • pp.215-229
    • /
    • 2023
  • In this study, non-destructive technologies that can be applied to evaluate the integrity of valve materials, safety against internal pressure caused by corrosion, and the blocking function of large-diameter water valves during operation without requiring specimen collection or manpower entering the inside of the valve were tested to assess the reliability of the technologies and their suitability for field application. The results showed that the condition of the graphite structure inside the valve body can be evaluated directly through the optical microscope in the field without specimen collection for large-diameter water butterfly valves, and the depth of corrosion inside the valve body can be determined by array ultrasound and the tensile strength can be measured by instrumented indentation test. The reliability of each of these non-destructive techniques is high, and they can be widely used to evaluate the condition of steel or cast iron pipes that are significantly smaller in thickness than valves. Evaluation of blocking function of the valves with mixed gas showed that it can be detected even when a very low flow rate of mixed gas passes through the disk along with the water flow. Finally, as a result of evaluating the field applicability of non-destructive technologies for three old butterfly valves installed in the US industrial water pipeline, it was found that it is possible to check the material and determine the suitability of large-diameter water valves without taking samples, and to determine the corrosion state and mechanical strength. In addition, it was possible to evaluate safety through the measurement results, and it is judged that the evaluation of the blocking function using mixed gas will help strengthen preventive response in the event of an accident.

백서의 실험적 치아이동시 osteonectin 및 osteocalcin의 발현 (THE EXPRESSION OF OSTEONECTIN AND OSTEOCALCIN IN THE EXPERIMENTAL TOOTH MOVEMENT IN RAT)

  • 배성렬;김상철
    • 대한치과교정학회지
    • /
    • 제28권5호
    • /
    • pp.699-716
    • /
    • 1998
  • 본 연구는 열을 이용한 금속 브라켓의 재생 처리시, 기저부 형태와 브라켓 재생 방법에 따른 전단접착강도 및 브라켓 탈락 양상을 비교하고자 시행되었다. 교정 치료를 위해 발거된 건전한 소구치 252개를 수집하고, Type I, Type II, Type III 스탠다드 브라켓을 각각 재생 방법에 따라 네 군으로 나누어 준비된 소구치에 접착하고, Instron Universal Testing Machine(Model 4466)으로 전단접착강도를 측정하였으며, 브라켓의 탈락 양상을 관찰하고 브라켓 기저부의 주사전자현미경 소견을 관찰하였다. SPSS 통계처 리 프로그램을 이용하여 일원분산분석(oneway ANOVA), Scheffe's multiple range test를 실시하여 다음과 같은 결론을 얻었다. 1. 브라켓 기저부 형태에 따른 전단접착강도는 유의차가 있었으며(p<0.001), 그 크기는 Type III(round indentation, micro-etched base), Typ I(foil-mesh base), Type II(grooved integral base, micro-etched)의 순이었다. 2. 생 방법에 따른 전단접착강도는, Type I, Tpe II 브라켓에서는 Big Jane에 1분간 처리시 우수한 결과를 보였고 (p<0.05), Type III 브라켓에서는 각 군간 유의한 차이를 보이지 않았다(p>0.05). 3. Type I, Type II 브라켓은 기저부-레진 계면에서 가장 높은 빈도로 탈락하였고, Type III 브라켓에서는 레진의 절반 가량이 치면에 잔존하는 탈락 양상이 가장 많았다. 4. 탈락 양상에 따라 탈락시의 전단접착강도가 유의성 있는 차이를 보였는데(p<0.05),브라켓 탈락시 접착제의 절반 가량이 치면에 잔존하는 경우 전단접착강도가 가장 큰 것으로 나타났다. 5. 브라켓 재생 후 기저부에 남아 있는 접착제는 전단접착강도의 감소에 영향을 미치지 않았다.

  • PDF

PREPARATION OF AMORPHOUS CARBON NITRIDE FILMS AND DLC FILMS BY SHIELDED ARC ION PLATING AND THEIR TRIBOLOGICAL PROPERTIES

  • Takai, Osamu
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2000년도 추계학술발표회 초록집
    • /
    • pp.3-4
    • /
    • 2000
  • Many researchers are interested in the synthesis and characterization of carbon nitride and diamond-like carbon (DLq because they show excellent mechanical properties such as low friction and high wear resistance and excellent electrical properties such as controllable electical resistivity and good field electron emission. We have deposited amorphous carbon nitride (a-C:N) thin films and DLC thin films by shielded arc ion plating (SAIP) and evaluated the structural and tribological properties. The application of appropriate negative bias on substrates is effective to increase the film hardness and wear resistance. This paper reports on the deposition and tribological OLC films in relation to the substrate bias voltage (Vs). films are compared with those of the OLC films. A high purity sintered graphite target was mounted on a cathode as a carbon source. Nitrogen or argon was introduced into a deposition chamber through each mass flow controller. After the initiation of an arc plasma at 60 A and 1 Pa, the target surface was heated and evaporated by the plasma. Carbon atoms and clusters evaporated from the target were ionized partially and reacted with activated nitrogen species, and a carbon nitride film was deposited onto a Si (100) substrate when we used nitrogen as a reactant gas. The surface of the growing film also reacted with activated nitrogen species. Carbon macropartic1es (0.1 -100 maicro-m) evaporated from the target at the same time were not ionized and did not react fully with nitrogen species. These macroparticles interfered with the formation of the carbon nitride film. Therefore we set a shielding plate made of stainless steel between the target and the substrate to trap the macropartic1es. This shielding method is very effective to prepare smooth a-CN films. We, therefore, call this method "shielded arc ion plating (SAIP)". For the deposition of DLC films we used argon instead of nitrogen. Films of about 150 nm in thickness were deposited onto Si substrates. Their structures, chemical compositions and chemical bonding states were analyzed by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and infrared spectroscopy. Hardness of the films was measured with a nanointender interfaced with an atomic force microscope (AFM). A Berkovich-type diamond tip whose radius was less than 100 nm was used for the measurement. A force-displacement curve of each film was measured at a peak load force of 250 maicro-N. Load, hold and unload times for each indentation were 2.5, 0 and 2.5 s, respectively. Hardness of each film was determined from five force-displacement curves. Wear resistance of the films was analyzed as follows. First, each film surface was scanned with the diamond tip at a constant load force of 20 maicro-N. The tip scanning was repeated 30 times in a 1 urn-square region with 512 lines at a scanning rate of 2 um/ s. After this tip-scanning, the film surface was observed in the AFM mode at a constant force of 5 maicro-N with the same Berkovich-type tip. The hardness of a-CN films was less dependent on Vs. The hardness of the film deposited at Vs=O V in a nitrogen plasma was about 10 GPa and almost similar to that of Si. It slightly increased to 12 - 15 GPa when a bias voltage of -100 - -500 V was applied to the substrate with showing its maximum at Vs=-300 V. The film deposited at Vs=O V was least wear resistant which was consistent with its lowest hardness. The biased films became more wear resistant. Particularly the film deposited at Vs=-300 V showed remarkable wear resistance. Its wear depth was too shallow to be measured with AFM. On the other hand, the DLC film, deposited at Vs=-l00 V in an argon plasma, whose hardness was 35 GPa was obviously worn under the same wear test conditions. The a-C:N films show higher wear resistance than DLC films and are useful for wear resistant coatings on various mechanical and electronic parts.nic parts.

  • PDF