• Title/Summary/Keyword: indentation analysis

Search Result 206, Processing Time 0.027 seconds

Effect of Substrate Bias Voltage on DLC Films Prepared by ECR-PECVD (ECR-PECVD 방법으로 제작된 DLC 박막의 기판 Bias 전압 효과)

  • 손영호;정우철;정재인;박노길;김인수;김기홍;배인호
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.328-334
    • /
    • 2000
  • DLC (Diamond-Like Carbon) films were deposited by ECR-PECVD (electron cyclotron resonance plasma-enhanced chemical vapor deposition) method with the variation of substrate bias voltage under the others are constant except it. We have investigated the ion bombardment effect induced by the substrate bias voltage on films during the deposition of film. The characteristics of the film were analyzed using the Dektak surface profiler, SEM, FTIR spectroscopy, Raman spectroscopy and Nano Indentation tester. FTIR spectroscopy analysis shows that the amount of dehydrogenation in films was increased with the increase of substrate bias voltage and films thickness was decreased. Raman scattering analysis shows that integrated intensity ratio $(I_D /I_G)$ of the D and G peak was increased as the substrate bias voltage increased, and films hardness was increased. From these results, it can be concluded that films deposited at this experimental have the enhanced characteristics of DLC because of the ion bombardment effect on films during the deposition of film.

  • PDF

Redescription of Australocirrus shii and First Report of Afrokeronopsis aurea (Ciliophora: Spirotrichea: Sporadotrichida) from South Korea

  • Kabir, Ahmed Salahuddin;Bharti, Daizy;Shin, Mann Kyoon
    • Animal Systematics, Evolution and Diversity
    • /
    • v.34 no.1
    • /
    • pp.37-49
    • /
    • 2018
  • Two hypotrich ciliates, Australocirrus shii (Shi et al., 1997) Kumar & Foissner, 2015 and Afrokeronopsis aurea (Foissner & Stoeck, 2008) Foissner et al., 2010 isolated from freshwater habitats in Korea and were studied based on the specimens from live and after protargol impregnation. Australocirrus shii is redescribed based on morphology and 18S rRNA gene sequence, whereas Af. aurea is the first record for Korea. Main morphological features of the Korean population of Au. shii are as following: body size $100-200{\times}40-80{\mu}m$ in vivo; elongate to ellipsoidal or slightly elongate obovate, dorsoventrally flattened; transverse cirri arranged in (3+2) pattern, anterior pretransverse ventral cirrus distantly anterior of the first transverse cirrus; eight or nine dorsal kineties; and three caudal cirri. Main morphological features of the Korean population of Af. aurea are as following: body size $230-375{\times}70-145{\mu}m$ in vivo; shape elongate obovate or ellipsoidal, widest at the mid-body; undulating membranes in Australocirrus pattern with a buccal depression; and three caudal cirri. The Korean population of A. shii is similar in morphology with previous descriptions except for the presence of indentation at the posterior end in the Korean population. The Korean population of A. aurea is slightly shorter than the South African population and has slightly less marginal and mid-ventral cirri. The phylogenetic analysis of present two Korean hypotrichs and relevant species based on 18S rRNA gene sequences generated almost similar tree topologies compared with previous studies.

The Comparisons of Anthropometric Data According to Measurement Methods (측정방법에 따른 인체측정치의 비교 분석)

  • Yi, Kyong-Hwa;Kim, Ji-Eun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.1
    • /
    • pp.39-50
    • /
    • 2013
  • This study estimates the measurements required to make garments but omitted from Size Korea 2010. Before the estimation of the measurements, the differences of the measurement methods were reviewed through previous research related to clothing construction and various measurement protocols that include previous Size Korea 2010 projects and ISO. The research target was 308 females aged 20 to 30 who lived in Seoul and the surrounding Gyeonggi province. A total of 43 measurements were obtained by the direct measurement method and analyzed in this study. In addition, 17 measurements which differ from the measurement method were also measured directly. These 17 measurements items were waist height, waist back height, waist height natural indentation, body rise, rise length, waist back length 1 & 2, posterior shoulder length 1 & 2, arm length 1 & 2, upper arm circumference 1 & 2, elbow circumference 1 & 2, and waist circumference 1 & 2. To analyze the differences in measurements, the subjects were divided into 2 age groups (20's and 30's). The results were as follows: First, there were big differences in stature, waist height, shoulder length, total length, and neck shoulder point to breast points by age groups; however, there were no differences in 17 measurement (such as shoulder angles) by age groups. Second, it was determined that 'waist circumference 1 & 2', 'waist back length 1 & 2', 'arm length 1 & 2', 'elbow circumference 1 & 2', 'upper arm circumference 1 & 2' and 'body rise & rise length' had significant differences by measurement methods in the entire group as well as each age group. Third, the values of 8 measurements omitted from Size Korea 2010 were estimated using similar measurements. The results of the correlation analysis were utilized to select reasonable independent measurements. Finally, 10 regression equations were obtained by regression analysis; subsequently, these will be useful for estimation of omitted measurements in Size Korea 2010.

Comparison of two fracture toughness testing methods using a glass-infiltrated and a zirconia dental ceramic

  • Triwatana, Premwara;Srinuan, Phakphum;Suputtamongkol, Kallaya
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.1
    • /
    • pp.36-43
    • /
    • 2013
  • PURPOSE. The objective of this study was to compare the fracture toughness ($K_{Ic}$) obtained from the single edge V-notched beam (SEVNB) and the fractographic analysis (FTA) of a glass-infiltrated and a zirconia ceramic. MATERIALS AND METHODS. For each material, ten bar-shaped specimens were prepared for the SEVNB method ($3mm{\times}4mm{\times}25mm$) and the FTA method ($2mm{\times}4mm{\times}25mm$). The starter V-notch was prepared as the fracture initiating flaw for the SEVNB method. A Vickers indentation load of 49 N was used to create a controlled surface flaw on each FTA specimen. All specimens were loaded to fracture using a universal testing machine at a crosshead speed of 0.5-1 mm/min. The independent-samples t-test was used for the statistical analysis of the $K_{Ic}$ values at ${\alpha}$=0.05. RESULTS. The mean $K_{Ic}$ of zirconia ceramic obtained from SEVNB method ($5.4{\pm}1.6\;MPa{\cdot}m^{1/2}$) was comparable to that obtained from FTA method ($6.3{\pm}1.6\;MPa{\cdot}m^{1/2}$). The mean $K_{Ic}$ of glass-infiltrated ceramic obtained from SEVNB method ($4.1{\pm}0.6\;MPa{\cdot}m^{1/2}$) was significantly lower than that obtained from FTA method ($5.1{\pm}0.7\;MPa{\cdot}m^{1/2}$). CONCLUSION. The mean $K_{Ic}$ of the glass-infiltrated and zirconia ceramics obtained from the SEVNB method were lower than those obtained from FTA method even they were not significantly different for the zirconia material. The differences in the $K_{Ic}$ values could be a result of the differences in the characteristics of fracture initiating flaws of these two methods.

A Semi-analytical Approach for Numerical Analysis of Residual Stress in Oxide Scale Grown on Hot-rolled Steels (열간압연강에서 형성된 산화물 스케일의 잔류 응력 수치 분석을 위한 준해석적 방법 개발)

  • Y.-J. Jun;J.-G. Yoon;J.-M. Lee;S.-H. Kim;Y.-C. Kim;S. Nam;W. Noh
    • Transactions of Materials Processing
    • /
    • v.33 no.3
    • /
    • pp.200-207
    • /
    • 2024
  • In this study, we developed a semi-analytical approach for the numerical analysis of residual stress in oxide scales formed on hot-rolled steels. The oxide scale, formed during the hot rolling process, experiences complex interactions due to thermal and mechanical influences, significantly affecting the material's integrity and performance. Our research focuses on integrating various stress components such as thermal stress, growth stress, and creep behavior to predict the residual stress within the oxide layer. The semi-analytical method combines analytical expressions for each stress component with numerical integration to account for their cumulative effects. Validation through instrumented indentation tests confirms the reliability of our model, which considers thermal expansion coefficient (CTE) differences, scale growth, and creep-induced stress relaxation. Our findings indicate that thermal stress resulting from CTE differences significantly impacts the overall residual stress, with growth stress contributing a compressive component during cooling, and creep behavior playing a minor role in stress relaxation. This comprehensive approach enhances the accuracy of residual stress prediction, facilitating the optimization of material design and processing conditions for hot-rolled steel products.

A study on the comparison by the methods of estimating the relaxation load of SEM-pile (SEM파일의 이완하중 산정방법별 이완하중량 비교 연구)

  • Kim, Hyeong-Gyu;Park, Eun-Hyung;Cho, Kook-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.543-560
    • /
    • 2018
  • With the increased development in downtown underground space facilities that vertically cross under a railway at a shallow depth, the demand for non-open cut method is increasing. However, most construction sites still adopt the pipe roof method, where medium and large diameter steel pipes are pressed in to form a roof, enabling excavation of the inside space. Among the many factors that influence the loosening region and loads that occur while pressing in steel pipes, the size of the pipe has the largest impact, and this factor may correspond to the magnitude of load applied to the underground structure inside the steel pipe roof. The super equilibrium method (SEM) has been developed to minimize ground disturbance and loosening load, and uses small diameter pipes of approximately 114 mm instead of conventional medium and large diameter pipes. This small diameter steel pipe is called an SEM pile. After SEM piles are pressed in and the grouting reinforcement is constructed, a crossing structure is pressed in by using a hydraulic jack without ground subsidence or heaving. The SEM pile, which plays the role of timbering, is a fore-poling pile of approximately 5 m length that prevents ground collapse and supports surface load during excavation of toe part. The loosening region should be adequately calculated to estimate the spacing and construction length of the piles and stiffness of members. In this paper, we conducted a comparative analysis of calculations of loosening load that occurs during the press-in of SEM pile to obtain an optimal design of SEM. We analyzed the influence of factors in main theoretical and empirical formulas applied for calculating loosening regions, and carried out FEM analysis to see an appropriate loosening load to the SEM pile. In order to estimate the soil loosening caused by actual SEM-pile indentation and excavation, a steel pipe indentation reduction model test was conducted. Soil subsidence and soil loosening were investigated quantitatively according to soil/steel pipe (H/D).

Processing and properties of the $SiO_2-ZrO_2-Na_2O-B_2O_3$glass ceramics ($SiO_2-ZrO_2-Na_2O-B_2O_3$계 결정화 유리의 제조와 물성)

  • 안주삼;이원유;채병준;최승철;박영선
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.518-523
    • /
    • 1998
  • The fracture toughness and hardness of 62 %$SiO_2-19%ZrO_2-9%Na_2O-10%B_2O_3$(wt%) glass ceramics system were investigated. As a result of DTA study to find crystallization temperature, an exothermic peak near $820^{\circ}C$ was observed. The optimum nucleation temperature and the optimum crystal growth temperature were determined by XRD and SEM analysis, and were approximately $650^{\circ}C$, $840^{\circ}C$ respectively. The fracture toughness of this zirconia glass ceramics was determined by Vickers Indentation Method. The hardness value was not changed with increasing of the heat treatment temperature, but fracture toughness value was increased up to $1.8 MPa{\cdot}m^{1/2}$ at $840^{\circ}C$, with increasing of heat treatment temperature.

  • PDF

CT Findings of Persistent Pure Ground Glass Opacity: Can We Predict the Invasiveness?

  • Liu, Li-Heng;Liu, Ming;Wei, Ran;Jin, Er-Hu;Liu, Yu-Hui;Xu, Liang;Li, Wen-Wu;Huang, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.1925-1928
    • /
    • 2015
  • Background: To investigate whether CT findings can predict the invasiveness of persistent cancerous pure ground glass opacity (pGGO) by correlating the CT imaging features of persistent pGGO with pathological changes. Materials and Methods: Ninety five patients with persistent pGGOs were included. Three radiologists evaluated the morphologic features of these pGGOs at high resolution CT (HRCT). Binary logistic regression was used to assess the association between CT findings and histopathological classification (pre-invasive and invasive groups). Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of diameters. Results: A total of 105 pGGOs were identified. Between pre-invasive (atypical adenomatous hyperplasia, AAH, and adenocarcinoma in situ, AIS) and invasive group (minimally invasive adenocarcinoma, MIA and invasive lung adenocarcinomas, ILA), there were significant differences in diameter, spiculation and vessel dilatation (p<0.05). No difference was found in air-bronchogram, bubble-lucency, lobulated-margin, pleural indentation or vascular convergence (p>0.05). The optimal threshold value of the diameters to predict the invasiveness of pGGO was 12.50mm. Conclusions: HRCT features can predict the invasiveness of persistent pGGO. The pGGO with a diameter more than 12.50mm, presences of spiculation and vessel dilatation are important factors to differentiate invasive adenocarcinoma from pre-invasive cancerous lesions.

Effect of Crystal Orientation on Material Removal Characteristics in Sapphire Chemical Mechanical Polishing (사파이어 화학기계적 연마에서 결정 방향이 재료제거 특성에 미치는 영향)

  • Lee, Sangjin;Lee, Sangjik;Kim, Hyoungjae;Park, Chuljin;Sohn, Keunyong
    • Tribology and Lubricants
    • /
    • v.33 no.3
    • /
    • pp.106-111
    • /
    • 2017
  • Sapphire is an anisotropic material with excellent physical and chemical properties and is used as a substrate material in various fields such as LED (light emitting diode), power semiconductor, superconductor, sensor, and optical devices. Sapphire is processed into the final substrate through multi-wire saw, double-side lapping, heat treatment, diamond mechanical polishing, and chemical mechanical polishing. Among these, chemical mechanical polishing is the key process that determines the final surface quality of the substrate. Recent studies have reported that the material removal characteristics during chemical mechanical polishing changes according to the crystal orientations, however, detailed analysis of this phenomenon has not reported. In this work, we carried out chemical mechanical polishing of C(0001), R($1{\bar{1}}02$), and A($11{\bar{2}}0$) substrates with different sapphire crystal planes, and analyzed the effect of crystal orientation on the material removal characteristics and their correlations. We measured the material removal rate and frictional force to determine the material removal phenomenon, and performed nano-indentation to evaluate the material characteristics before and after the reaction. Our findings show that the material removal rate and frictional force depend on the crystal orientation, and the chemical reaction between the sapphire substrate and the slurry accelerates the material removal rate during chemical mechanical polishing.

The Effects of CF4 Partial Pressure on the Hydrophobic Thin Film Formation on Carbon Steel by Surface Treatment and Coating Method with Linear Microwave Ar/CH4/CF4 Plasma

  • Han, Moon-Ki;Cha, Ju-Hong;Lee, Ho-Jun;Chang, Cheol Jong;Jeon, Chang Yeop
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2007-2013
    • /
    • 2017
  • In order to give hydrophobic surface properties on carbon steel, the fluorinated amorphous carbon films were prepared by using linear 2.45GHz microwave PECVD device. Two different process approaches have been tested. One is direct deposition of a-C:H:F films using admixture of $Ar/CH_4/CF_4$ working gases and the other is surface treatment using $CF_4$ plasma after deposition of a-C:H film with $Ar/CH_4$ binary gas system. $Ar/CF_4$ plasma treated surface with high $CF_4$ gas ratio shows best hydrophobicity and durability of hydrophobicity. Nanometer scale surface roughness seems one of the most important factors for hydrophobicity within our experimental conditions. The properties of a-C:H:F films and $CF_4$ plasma treated a-C:H films were investigated in terms of surface roughness, hardness, microstructure, chemical bonding, atomic bonding structure between carbon and fluorine, adhesion and water contact angle by using atomic force microscopy (AFM), nano-indentation, Raman analysis and X-ray photoelectron spectroscopy (XPS).