• 제목/요약/키워드: incremental nonlinear dynamic analysis (IDA)

검색결과 56건 처리시간 0.018초

비탄성변위비와 붕괴강도비를 이용한 MPA기반의 IDA 해석법 (MPA-based IDA Using the Inelastic Displacement ratio, CR and the Collapse Intensity, RC)

  • 한상환;석승욱;이태섭
    • 한국지진공학회논문집
    • /
    • 제14권5호
    • /
    • pp.33-39
    • /
    • 2010
  • 본 연구는 Modal Pushover Analysis(MPA)를 기반으로 비탄성 변위비(inelastic displacement ratio, $C_R$)와 붕괴 강도비(collapse strength ratio, $R_C$)를 이용한 간략한 Incremental Dynamic Analysis (IDA) 해석법을 제안해 냈다. 이 해석법은 선형 또는 비선형 동적해석 수행 없이 다자유도 시스템의 응답을 계산하기 때문에 간단하게 IDA곡선을 얻을 수 있다. 제안한 방법의 정확성은 6층, 9층, 20층의 철골 모멘트 골조를 대상으로 44개의 지진데이터를 사용하였으며 본 연구에서 제안하는 MPA를 이용한 $C_R-R_C$ IDA 해석결과와 비선형 동적해석 (Nonlinear Response History Analysis)을 통한 IDA 응답값, 그리고 각 주요모드의 비선형 동적해석을 통한 MPA-IDA 응답 값을 비교하여 타당성을 확인하였다. MPA를 이용한 $C_R-R_C$ IDA 해석법은 반복된 비선형 동적해석 과정이 없기 때문에 계산시 소요시간이 가장 작았으며 비교적 정확한 결과를 나타냈다.

Seismic performance evaluation of buckling restrained braced frames (BRBF) using incremental nonlinear dynamic analysis method (IDA)

  • Khorami, M.;Khorami, M.;Alvansazyazdi, M.;Shariati, M.;Zandi, Y.;Jalali, A.;Tahir, M.M.
    • Earthquakes and Structures
    • /
    • 제13권6호
    • /
    • pp.531-538
    • /
    • 2017
  • In this paper, the seismic behavior of BRBF structures is studied and compared with special concentric braced frames (SCBF). To this purpose, three BRBF and three SCBF structures with 3, 5 and 10 stories are designed based on AISC360-5 and modelled using OpenSees. These structures are loaded in accordance with ASCE/SEI 7-10. Incremental nonlinear dynamic analysis (IDA) are performed on these structures for 28 different accelerograms and the median IDA curves are used to compare seismic capacity of these two systems. Results obtained, indicates that BRBF systems provide higher capacity for the target performance level in comparison with SCBF systems. And structures with high altitude (in this study, 5 and 10 stories) with the possibility of exceeding the collapse prevention performance level, further than lower altitude (here 3 floors) structures.

Assessment of capacity curves for transmission line towers under wind loading

  • Banik, S.S.;Hong, H.P.;Kopp, Gregory A.
    • Wind and Structures
    • /
    • 제13권1호
    • /
    • pp.1-20
    • /
    • 2010
  • The recommended factored design wind load effects for overhead lattice transmission line towers by codes and standards are evaluated based on the applicable wind load factor, gust response factor and design wind speed. The current factors and design wind speed were developed considering linear elastic responses and selected notional target safety levels. However, information on the nonlinear inelastic responses of such towers under extreme dynamic wind loading, and on the structural capacity curves of the towers in relation to the design capacities, is lacking. The knowledge and assessment of the capacity curve, and its relation to the design strength, is important to evaluate the integrity and reliability of these towers. Such an assessment was performed in the present study, using a nonlinear static pushover (NSP) analysis and incremental dynamic analysis (IDA), both of which are commonly used in earthquake engineering. For the IDA, temporal and spatially varying wind speeds are simulated based on power spectral density and coherence functions. Numerical results show that the structural capacity curves of the tower determined from the NSP analysis depend on the load pattern, and that the curves determined from the nonlinear static pushover analysis are similar to those obtained from IDA.

Proposal of a Incremental Modal Pushover Analysis (IMPA)

  • Bergami, A.V.;Forte, A.;Lavorato, D.;Nuti, C.
    • Earthquakes and Structures
    • /
    • 제13권6호
    • /
    • pp.539-549
    • /
    • 2017
  • Existing reinforced concrete frame buildings designed for vertical loads could only suffer severe damage during earthquakes. In recent years, many research activities were undertaken to develop a reliable and practical analysis procedure to identify the safety level of existing structures. The Incremental Dynamic Analysis (IDA) is considered to be one of the most accurate methods to estimate the seismic demand and capacity of structures. However, the executions of many nonlinear response history analyses (NL_RHA) are required to describe the entire range of structural response. The research discussed in this paper deals with the proposal of an efficient Incremental Modal Pushover Analysis (IMPA) to obtain capacity curves by replacing the nonlinear response history analysis of the IDA procedure with Modal Pushover Analysis (MPA). Firstly, In this work, the MPA is examined and extended to three-dimensional asymmetric structures and then it is incorporated into the proposed procedure (IMPA) to estimate the structure's seismic response and capacity for given seismic actions. This new procedure, which accounts for higher mode effects, does not require the execution of complex NL-RHA, but only a series of nonlinear static analysis. Finally, the extended MPA and IMPA were applied to an existing irregular framed building.

Behavior factor of vertically irregular RCMRFs based on incremental dynamic analysis

  • Habibi, Alireza;Gholami, Reza;Izadpanah, Mehdi
    • Earthquakes and Structures
    • /
    • 제16권6호
    • /
    • pp.655-664
    • /
    • 2019
  • Behavior factor of a structure plays a crucial role in designing and predicting the inelastic responses of it. Recently, irregular buildings have been interested in many designers. To design irregular structures, recognizing the inelastic behavior of them is necessary. The main objective of this study is to determine the behavior factor of irregular Reinforced Concrete Moment Resisting Frames (RCMRFs) via nonlinear Incremental Dynamic Analysis (IDA). To do so, first, several frames are designed according to the regulations of the Iranian national building code. Then the nonlinear incremental dynamic analysis is performed on these structures and the behavior factors are achieved. The acquired results are compared with those obtained using pushover analysis and it is shown that the behavior factors acquired from the nonlinear incremental dynamic analysis are somewhat larger than those obtained from pushover analysis. Eventually, two practical relations are proposed to predict the behavior factor of irregular RCMRFs. Since these relations are based on the simple characteristics of frames such as: irregularity indices, the height and fundamental period, the behavior factor of irregular RCMRFs can be achieved efficiently using these relations. The proposed relations are applied to design of four new irregular RCMRFs and the outcomes confirm the accuracy of the aforementioned relations.

내진성능의 증분동적해석을 위한 비선형 약산법의 비교 검토 (Comparison of Approximate Nonlinear Methods for Incremental Dynamic Analysis of Seismic Performance)

  • 배경근;유명화;강병두;김재웅
    • 한국지진공학회논문집
    • /
    • 제12권1호
    • /
    • pp.79-87
    • /
    • 2008
  • 구조물의 내진 성능 평가는 구조물에 가해진 지진력에 대한 변위요구와 같은 구조물의 성능 평가를 필요로 한다. 증분동적해석(IDA)은 지진하중에 대한구조물의 성능 평가를 위해 최근에 알려진 해석 방법이다. 이 방법은 구조물의 탄성 단계에서부터 항복, 파단에 이르기까지 지반가속도의 증가 수준에 따른 구조물의 전체 거동을 파악할 수 있는 방법이다. 대부분의 구조물들은 강한 지진을 받을 경우, 비선형 거동의 변형이 예상된다. 여러 가지 비선형해석법 가운데 구조물의 내진역량을 계산하기 위한 가장 정확한 방법은 비선형 시간이력해석(NRHA)이긴 하나 많은 시간과 노력이 요구되고 있다. 따라서 구조물의 비선형 거동을 보다 간편하게 예측하기 위한 정확하고 실용적인 비선형 약산해석법에 관한 연구들이 활발히 진행되고 있다. 비선형 모드중첩법(UMRHA)은 pushover곡선으로부터 구한 등가단자유도계를 비선형 시간이력해석 또는 응답스펙트럼을 이용하여 구조물의 비선형 응답을 구할 수 있는 방법이다. 직접스펙트럼해석법(DSA)은 pushover 해석으로부터 구조물의 선형 진동주기와 항복강도를 구한 다음, 반복계산 없이 비선형 응답을 직접 산정하는 약산법이다. 본 연구에서는 내진성능의 증분동적해석을 위한 비선형 약산법의 정확성과 신뢰성을 비교 검토한다.

The accuracy of fragility curves of the steel moment-resisting frames and SDOF systems

  • Yaghmaei-Sabegh, Saman;Jafari, Ali;Eghbali, Mahdi
    • Steel and Composite Structures
    • /
    • 제39권3호
    • /
    • pp.243-259
    • /
    • 2021
  • In the present paper, a Monte Carlo-based framework is developed to investigate the accuracy and reliability of analytical fragility curves of steel moment-resisting frames and simple SDOF systems. It is also studied how the effectiveness of incremental dynamic analysis (IDA) and multiple stripes analysis (MSA) approaches, as two common nonlinear dynamic analysis methods, are influenced by the number of records and analysis stripes in fragility curves producing. Results showed that the simple SDOF systems do not provide accurate and reliable fragility curves compared with realistic steel moment-resisting structures. It is demonstrated that, the effectiveness of nonlinear dynamic analysis approaches is dependent on the fundamental period of structures, where in short-period structures, IDA is found to be more effective approach compared with MSA. This difference between the effectiveness of two analysis approaches decreases as the fundamental period of structures become longer. Using of 2 or 3 analysis stripes in MSA approach leads to significant inaccuracy and unreliability in the estimated fragility curves. Additionally, 15 number of ground motion records is recommended as a threshold of significant unreliability in estimated fragility curves, constructed by MSA.

증분동적해석을 이용한 철골모멘트골조의 지진취약도 함수 (Seismic Fragility Functions for Steel Moment Resisting Frames using Incremental Dynamic Analyses)

  • 이승원;이원호;김형준
    • 한국전산구조공학회논문집
    • /
    • 제27권6호
    • /
    • pp.509-516
    • /
    • 2014
  • 일반적으로 지진취약도를 평가할 때 사용되는 해석방법 중 하나인 역량스펙트럼 방법은 증분동적해석에 비해 해석의 정확성이 떨어지는 제한점이 있다. 본 연구에서는 증분동적해석이 가장 정확도가 높은 해석기법이라는 점에 착안하여 증분동적해석을 이용한 지진취약도 곡선의 도출과정을 제안하였다. 타당성 비교를 위하여 역량스펙트럼 방법과 제안된 방법으로 도출한 취약도 곡선을 비교하여 두 해석기법에 의한 지진취약도 곡선의 경향을 분석하였다. 그 결과 Slight damage와 Moderate damage의 경우 두 해석방법이 유사한 곡선 경향을 보이나 Extensive damage와 Complete damage의 경우에는 IDA방법에 의한 곡선이 더 가파른 경향을 보였다. 이는 구조물의 거동을 이상화하여 극한점 이후 구조물의 저항 강도가 떨어지지 않는다고 가정하는 역량스펙트럼 방법의 영향을 받는 것으로 사료된다.

Evaluation of the seismic performance of special moment frames using incremental nonlinear dynamic analysis

  • Khorami, Majid;Khorami, Masoud;Motahar, Hedayatollah;Alvansazyazdi, Mohammadfarid;Shariati, Mahdi;Jalali, Abdolrahim;Tahir, M.M.
    • Structural Engineering and Mechanics
    • /
    • 제63권2호
    • /
    • pp.259-268
    • /
    • 2017
  • In this paper, the incremental nonlinear dynamic analysis is used to evaluate the seismic performance of steel moment frame structures. To this purpose, three special moment frame structure with 5, 10 and 15 stories are designed according to the Iran's national building code for steel structures and the provisions for design of earthquake resistant buildings (2800 code). Incremental Nonlinear Analysis (IDA) is performed for 15 different ground motions, and responses of the structures are evaluated. For the immediate occupancy and the collapse prevention performance levels, the probability that seismic demand exceeds the seismic capacity of the structures is computed based on FEMA350. Also, fragility curves are plotted for three high-code damage levels using HASUS provisions. Based on the obtained results, it is evident that increase in the height of the frame structures reduces the reliability level. In addition, it is concluded that for the design earthquake the probability of exceeding average collapse prevention level is considerably larger than high and full collapse prevention levels.9.

Probabilistic seismic demand of isolated straight concrete girder highway bridges using fragility functions

  • Bayat, Mahmoud;Ahmadi, Hamid Reza;Kia, Mehdi;Cao, Maosen
    • Advances in concrete construction
    • /
    • 제7권3호
    • /
    • pp.183-189
    • /
    • 2019
  • In this study, it has been tried to prepare an analytical fragility curves for isolated straight continues highway bridges by considering different spectral intensity measures. A three-span concrete isolated bridge has been selected and the seismic performance of the bridge has been improved by Lead Rubber Bearing (LRB). Incremental Dynamic Analysis (IDA) is applied to the bridge in longitudinal direction. A suite of 14 earthquake ground motions from medium to sever motions are scaled and used for nonlinear time history analysis. Fragility function considers the relationship of earthquake intensity measures (IM) and probability of exceeding certain Damage State (DS). A full three dimensional finite element model of the isolated bridge has been developed and analyzed. A wide range of different intensity measures are selected and the optimal intensity measure which has the less dispersion is proposed.