• 제목/요약/키워드: incremental conductance

검색결과 62건 처리시간 0.015초

개선된 입자 무리 최적화 알고리즘 이용한 태양광 패널의 최대 전력점 추적 (Maximum Power Point Tracking of Photovoltaic using Improved Particle Swarm Optimization Algorithm)

  • 김재정;김창복
    • 한국항행학회논문지
    • /
    • 제24권4호
    • /
    • pp.291-298
    • /
    • 2020
  • 본 연구는 입자 무리 최적화 (PSO; particle swarm optimization) 알고리즘을 이용하여 기존의 MPPT 알고리즘보다 신속하게 MPP를 추적할 수 있는 모델을 제안하였다. 제안 모델은 PSO 알고리즘에서 gbest 및 pbest의 가속 상수를 높게 설정하여 신속하게 MPP 지점을 추적하고 이로 인한 전력 불안정 문제점을 제거하였다. 또한, 일사량의 급격한 변화에 따른 태양광 패널의 전력 변화를 감지하여 알고리즘을 다시 실행하였다. 실험결과, 일사량이 691.5W/m2에 대해서 MPPT 시간이 0.03초와 전력이 131.65로서 기존의 P&O와 INC 알고리즘보다 높은 전력과 빠른 속도로 MPP를 추적하였으며, 일사량 변화에 따라 신속하게 MPP를 추적하였다. 제안 모델은 태양광 패널이 병렬로 연결되어 있는 태양광 발전소에서 부분적인 음영에 의해 전력량의 변화를 감지하였을 경우에도 적용할 수 있다. 본 연구는 MPPT 알고리즘을 개선하기 위해 MFO (moth flame optimization) 및 WOA (whale optimization algorithm)와 같은 최적화 알고리즘에 대한 비교 연구가 필요하다.

인공 신경망과 퍼지를 이용한 최대 전력점 추적을 위한 모델 (Model for Maximum Power Point Tracking Using Artificial Neural Network and Fuzzy)

  • 김태오;하은규;김창복
    • 한국정보기술학회논문지
    • /
    • 제17권9호
    • /
    • pp.19-30
    • /
    • 2019
  • 태양광 발전은 일사량 및 온도 등 외부변화에 따른 안정적이고 효율적인 최대 전력 출력 전력점을 추적하기 위한 MPPT 알고리즘이 필요하다. 본 연구는 인공 신경망을 이용하여 기존 MPPT 알고리즘보다 신속하게 MPP를 추적할 수 있는 모델을 구현하였다. 제안 모델은 인공 신경망의 학습 데이터를 위해 다양한 일사량과 온도의 조합에 대해서 기존 MPPT 알고리즘으로 MPP의 전류와 전압을 찾았다. 획득한 MPP 데이터는 입력 노드를 일사량과 온도로 출력 노드를 전류와 전압으로 하여 학습하였다. 실험결과 일사량과 온도 변화가 있는 0~0.3t 구간에서 추적시간은 기존 알고리즘인 P&O와 InC 그리고 Fuzzy는 각각 잘못된 계산식t, 0.49t 그리고 0.4076t이였으며, 제안 모델은 0.32511t로서 기존 알고리즘 보다 0.1t 이상 신속하게 MPP를 추적하였다.