• Title/Summary/Keyword: inconsistent least-squares problems

Search Result 3, Processing Time 0.016 seconds

PRECONDITIONED KACZMARZ-EXTENDED ALGORITHM WITH RELAXATION PARAMETERS

  • Popa, Constantin
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.3
    • /
    • pp.757-770
    • /
    • 1999
  • We analyse in this paper the possibility of using preconditioning techniques as for square non-singular systems, also in the case of inconsistent least-squares problems. We find conditions in which the minimal norm solution of the preconditioned least-wquares problem equals that of the original prblem. We also find conditions such that thd Kaczmarz-Extendid algorithm with relaxation parameters (analysed by the author in [4]), cna be adapted to the preconditioned least-squares problem. In the last section of the paper we present numerical experiments, with two variants of preconditioning, applied to an inconsistent linear least-squares model probelm.

CHARACTERIZATION OF THE SOLUTIONS SET OF INCONSISTENT LEAST-SQUARES PROBLEMS BY AN EXTENDED KACZMARZ ALGORITHM

  • Popa, Constantin
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.1
    • /
    • pp.51-64
    • /
    • 1999
  • We give a new characterization of the solutions set of the general (inconsistent) linear least-squares problem using the set of linit-points of an extended version of the classical Daczmarz's pro-jections method. We also obtain a "step error reduction formula" which in some cases can give us apriori information about the con-vergence properties of the algorithm. Some numerical experiments with our algorithm and comparisons between it and others existent in the literature are made in the last section of the paper.

PROJECTION ALGORITHMS WITH CORRECTION

  • Nicola, Aurelian;Popa, Constantin;Rude, Ulrich
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.697-712
    • /
    • 2011
  • We present in this paper two versions of a general correction procedure applied to a classical linear iterative method. This gives us the possibility, under certain assumptions, to obtain an extension of it to inconsistent linear least-squares problems. We prove that some well known extended projection type algorithms from image reconstruction in computerized tomography fit into one or the other of these general versions and are derived as particular cases of them. We also present some numerical experiments on two phantoms widely used in image reconstruction literature. The experiments show the importance of these extension procedures, reflected in the quality of reconstructed images.