• Title/Summary/Keyword: incompressible core

Search Result 19, Processing Time 0.028 seconds

General equations for free vibrations of thick doubly curved sandwich panels with compressible and incompressible core using higher order shear deformation theory

  • Nasihatgozar, M.;Khalili, S.M.R.;Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.151-176
    • /
    • 2017
  • This paper deals with general equations of motion for free vibration analysis response of thick three-layer doubly curved sandwich panels (DCSP) under simply supported boundary conditions (BCs) using higher order shear deformation theory. In this model, the face sheets are orthotropic laminated composite that follow the first order shear deformation theory (FSDT) based on Rissners-Mindlin (RM) kinematics field. The core is made of orthotropic material and its in-plane transverse displacements are modeled using the third order of the Taylor's series extension. It provides the potentiality for considering both compressible and incompressible cores. To find these equations and boundary conditions, Hamilton's principle is used. Also, the effect of trapezoidal shape factor for cross-section of curved panel element ($1{\pm}z/R$) is considered. The natural frequency parameters of DCSP are obtained using Galerkin Method. Convergence studies are performed with the appropriate formulas in general form for three-layer sandwich plate, cylindrical and spherical shells (both deep and shallow). The influences of core stiffness, ratio of core to face sheets thickness and radii of curvatures are investigated. Finally, for the first time, an optimum range for the core to face sheet stiffness ratio by considering the existence of in-plane stress which significantly affects the natural frequencies of DCSP are presented.

AN EFFICIENT INCOMPRESSIBLE FREE SURFACE FLOW SIMULATION USING GPU (GPU를 이용한 효율적인 비압축성 자유표면유동 해석)

  • Hong, H.E.;Ahn, H.T.;Myung, H.J.
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.35-41
    • /
    • 2012
  • This paper presents incompressible Navier-Stokes solution algorithm for 2D Free-surface flow problems on the Cartesian mesh, which was implemented to run on Graphics Processing Units(GPU). The INS solver utilizes the variable arrangement on the Cartesian mesh, Finite Volume discretization along Constrained Interpolation Profile-Conservative Semi-Lagrangian(CIP-CSL). Solution procedure of incompressible Navier-Stokes equations for free-surface flow takes considerable amount of computation time and memory space even in modern multi-core computing architecture based on Central Processing Units(CPUs). By the recent development of computer architecture technology, Graphics Processing Unit(GPU)'s scientific computing performance outperforms that of CPU's. This paper focus on the utilization of GPU's high performance computing capability, and presents an efficient solution algorithm for free surface flow simulation. The performance of the GPU implementations with double precision accuracy is compared to that of the CPU code using an representative free-surface flow problem, namely. dam-break problem.

Unstructured-grid Pressure-based Method for Analysing Incompressible flows (비정형격자 압력기준 유동해석기법을 이용한 비압축성 유동해석)

  • Kim J.;Kim T. J.;Kim Y. M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.42-47
    • /
    • 1998
  • The pressure-based methods are very popular in CFD because it requires less computer core memory compared to other coupled or density-based solvers. Currently structured-mesh methodology based on pressure-based algorithm is quite mature to apply to the practical problems. The unstructured mesh method needs much more computer memory than the structured-mesh method. However the pressure-based method utilizing the sequential approach does not require very large memory used for unstructured-mesh density-based solvers. The present study has developed the unstructured grid pressure-based method. Cell-centered finite volume method was selected due to robustness for imposing various boundary conditions and easy implementation of higher-order upwind scheme. The predictive capability of present method has validated against several benchmark problems.

  • PDF

An Analysis of the Flow Characteristics in the Tip Clearance of Axial Flow Rotor (축류 회전차 팁 틈새에서의 유동특성 해석)

  • 정재구;이명호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.735-745
    • /
    • 2004
  • A linear cascade of NACA 65-1810 profiles are investigated for tip leakage flow characteristics. and calculation results are compared with experimental result. STAR-CD commercial code was used to solve the three dimensional incompressible Navier-Stokes equation that was adopted for steady flow and high Reynolds $\kappa$- $\varepsilon$turbulent model. Numerical calculation of a linear cascade is carried out to investigate effect of tip clearance on pitchwise variations of velocity Profiles. and static pressure distributions on the blade surface at spanwise positions. In case of evolution of tip vortex core location. tip vortex geometry and static pressure at the center of the tip vortex core compared with experimental results. Calculation results are agreed well with the experimental data, and validated. The static pressure losses by tip leakage flow at 2% tip clearance were more than those at 1% tip clearance.

Calculation of a 2-D channel flow with a dimple (딤플이 존재하는 2차원 수로유동의 계산)

  • Choe, Seo-Won;Baek, Yeong-Ho;Kim, Du-Yeon;Gang, Ho-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.49-56
    • /
    • 1997
  • Heat-transfer enhancement is seeked through modifications of fin surface. Real life plate-fin heat exchangers have complex three-dimensional geometries. Fins can have arrays of dimples and are attached to rows of penetrating tubes. To isolate the effect of surface modification, we model the real flow by a two-dimensional channel flow with a dimple on one side. The flow is analysed by solving the incompressible Navier-Stokes equation by a finite volume method on a generalized boundary-fitted coordinate. Results show a trapped vortex inside the dimple for all cases computed. Local maximum of Nusselt number occurs near the downstream end of the dimple, due to such a vortex. Location of the vortex does not change with respect to the wall temperature change, but moved downstream when Reynolds number increases. This, together with the results that in all cases vortex core is somewhat downstream of the dimple center, suggests that the mean flow above continuously feeds the kinetic energy to the recirculating flow. Heat transfer enhancement and pressure losses are studied through analysing the relevant dimensionless parameters like, Nusselt number and friction factor. In all cases computed, dimpled channel flow experiences less pressure loss than two-dimensional Poiseuille flow.

Application of CUPID for subchannel-scale thermal-hydraulic analysis of pressurized water reactor core under single-phase conditions

  • Yoon, Seok Jong;Kim, Seul Been;Park, Goon Cherl;Yoon, Han Young;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.54-67
    • /
    • 2018
  • There have been recent efforts to establish methods for high-fidelity and multi-physics simulation with coupled thermal-hydraulic (T/H) and neutronics codes for the entire core of a light water reactor under accident conditions. Considering the computing power necessary for a pin-by-pin analysis of the entire core, subchannel-scale T/H analysis is considered appropriate to achieve acceptable accuracy in an optimal computational time. In the present study, the applicability of in-house code CUPID of the Korea Atomic Energy Research Institute was extended to the subchannel-scale T/H analysis. CUPID is a component-scale T/H analysis code, which uses three-dimensional two-fluid models with various closure models and incorporates a highly parallelized numerical solver. In this study, key models required for a subchannel-scale T/H analysis were implemented in CUPID. Afterward, the code was validated against four subchannel experiments under unheated and heated single-phase incompressible flow conditions. Thereafter, a subchannel-scale T/H analysis of the entire core for an Advanced Power Reactor 1400 reactor core was carried out. For the high-fidelity simulation, detailed geometrical features and individual rod power distributions were considered in this demonstration. In this study, CUPID shows its capability of reproducing key phenomena in a subchannel and dealing with the subchannel-scale whole core T/H analysis.

Low velocity impact response and dynamic stresses of thick high order laminated composite truncated sandwich conical shell based on a new TDOF spring-mass-damper model considering structural damping

  • Azizi, A.;Khalili, S.M.R.;Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.771-791
    • /
    • 2018
  • This paper deals with the low velocity impact response and dynamic stresses of composite sandwich truncated conical shells (STCS) with compressible or incompressible core. Impacts are assumed to occur normally over the top face-sheet and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The displacement fields of core and face sheets are considered by higher order and first order shear deformation theory (FSDT), respectively. Considering continuity boundary conditions between the layers, the motion equations are derived based on Hamilton's principal incorporating the curvature, in-plane stress of the core and the structural damping effects based on Kelvin-Voigt model. In order to obtain the contact force, the displacement histories and the dynamic stresses, the differential quadrature method (DQM) is used. The effects of different parameters such as number of the layers of the face sheets, boundary conditions, semi vertex angle of the cone, impact velocity of impactor, trapezoidal shape and in-plane stresses of the core are examined on the low velocity impact response of STCS. Comparison of the present results with those reported by other researchers, confirms the accuracy of the present method. Numerical results show that increasing the impact velocity of the impactor yields to increases in the maximum contact force and deflection, while the contact duration is decreased. In addition, the normal stresses induced in top layer are higher than bottom layer since the top layer is subjected to impact load. Furthermore, with considering structural damping, the contact force and dynamic deflection decrees.

Numerical simulation of wave interacting with a free rolling body

  • Jung, Jae Hwan;Yoon, Hyun Sik;Chun, Ho Hwan;Lee, Inwon;Park, Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.333-347
    • /
    • 2013
  • The present study numerically models the interaction between a regular wave and the roll motion of a rectangular floating structure. In order to simulate two-dimensional incompressible viscous two-phase flow in a numerical wave tank with the rectangular floating structure, the present study used the volume of fluid method based on the finite volume method. The sliding mesh technique is adopted to handle the motion of the rectangular floating structure induced by fluid-structure interaction. The effect of the wave period on the flow, roll motion and forces acting on the structure is examined by considering three different wave periods. The time variations of the wave height and the roll motion of the rectangular structure are in good agreement with experimental results for all wave periods. The present response amplitude operator is in good agreement with experimental results with the linear potential theory. The present numerical results effectively represent the entire process of vortex generation and evolution described by the experimental results. The longer wave period showed a different mechanism of the vortex evolution near each bottom corner of the structure compared to cases of shorter wave periods. In addition, the x-directional and z-directional forces acting on the structure are analyzed.

Development of FAMD Code to Calculate the Fluid Added Mass and Damping of Arbitrary Structures Submerged in Confined Viscous Fluid

  • Koo, Gyeong-Hoi;Lee, Jae-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.457-466
    • /
    • 2003
  • In this paper, the numerical finite element formulations were derived for the linearized Navier-Stokes' equations with assumptions of two-dimensional incompressible, homogeneous viscous fluid field, and small oscillation and the FAMD (Fluid Added Mass and Damping) code was developed for practical applications calculating the fluid added mass and damping. In formulations, a fluid domain is discretized with C$\^$0/-type quadratic quadrilateral elements containing eight nodes using a mixed interpolation method, i.e., the interpolation function for the velocity variable is approximated by a quadratic function based on all eight nodal points and the interpolation function for the pressure variable is approximated by a linear function based on the four nodal points at vertices. Using the developed code, the various characteristics of the fluid added mass and damping are investigated for the concentric cylindrical shell and the actual hexagon arrays of the liquid metal reactor cores.

Numerical Study of Wave Run-up around Offshore Structure in Waves

  • Cha, Kyung-Jung;Jung, Jae-Hwan;Yoon, Hyun-Sik;Chun, Ho-Hwan;Koo, Bon-Guk
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.61-66
    • /
    • 2016
  • This study presents the wave run-up height and depression depth around offshore cylindrical structures according to the wave period. The present study employs the volume of fluid method with the realizable turbulence model based on a commercial computational fluid dynamics software called the "STAR-CCM+" to simulate a 3D incompressible viscous two-phase turbulent flow. The present results for the wave run-up height and depression depth with regard to the wave period are compared with those of the relevant previous experimental and numerical studies.