• Title/Summary/Keyword: income groups

Search Result 1,303, Processing Time 0.023 seconds

The Cross-Cultural Study about Effects of Service Quality Dimensions on CS in Korea and China (할인점 서비스품질의 각 차원이 CS에 미치는 영향에 대한 한(韓).중(中)간 비교 문화적 연구)

  • Noh, Eun-Jeong;Seo, Yong-Goo
    • Journal of Global Scholars of Marketing Science
    • /
    • v.19 no.1
    • /
    • pp.23-35
    • /
    • 2009
  • A hypermarket as the one of the most globally standardized retailing format is also the type of store among various types of stores that the most active in expanding into other foreign markets. Recently, as several Korean retailing companies start to penetrate into Chinese market they differentiate themselves with modern facilities and customers service oriented high-end concept. China and Korea as Far East Asian countries share many common values, however precise and careful analysis should be carried out since there may also be critical differences in socio-economic aspects as well as in consumption patterns due to the level of development stages of retail industry among two countries. Even though precise and careful study is crucial on Chinese retailing market and consumers, none of researches and studies on 'how the quality of service dimensional structure is different between Korea and China', and 'what will be the most important and influential service dimensional factors for Chinese consuers compared to the hypermarkets customers in Korea' in order to improve the level of Chinese consumers satisfaction' have been fulfilled At this point of view, this study uses KD-SQS (Rho Eun Jung & Sir Yong Gu, 2008) which is a measure of Korean hypermarkets service quality to set up a hypothesis on Korean and Chinese consumers, and an empirical analysis is conducted. We try to get the answers about how the comparative importance of Service quality dimensions which decides the level of customer satisfaction is different depending on the cultural dimensions and socio-economic factors among two countries, Korea and China. Based upon the results, we try to give a valuable suggestion of what service dimensional factors should be reinforced to improve the level of CS in Chinese retailing market. Hypotheses for this study are as follows : H1. Each dimension of Service Quality significantly affects the level of CS H2. The effect of 'Basic Benefit' in service quality dimensions on the level of CS is greater in China than in Korea H3. The effect of 'Promotion' in service quality dimensions on the level of CS is greater in China than in Korea H4. The effect of 'Physical Aspects'in service quality dimensions on the level of CS is greater in Korea than in China. H5. The effect of 'Personal Interaction' in service quality dimensions on the level of CS is greater in China than in Korea H6. The effect of 'Policy' in service quality dimensions on the level of CS will be greater in Korean than in China H7. The effect of additional convenience in service quality dimensions on the level of CS will be greater in Korean than in China. More than 1,100 data were collected directly from the surveys of Chinese and Korean consumers in order to verify the hypotheses above. In Korea, stores which have floor space of over $9,000m^2$and opened later than year 2000 were selected for the samples, and thus Gayang, Wolgye, Sangbong, Eunpyeong, Suh-Suwon, Gojan stores and their customers were surveyed. In China, notable differences in the income levels and consumer behaviors between cities and regions were considered, and thus the research area was limited to the stores only in Shanghai. 6 stores which have the size of over $6,000m^2$ and opened later than 2000, such as Ruihong, Intu, Mudanjang, Sanrin, Raosimon, and Ranchao stores were selected for the survey. SPSS 12.0 and AMOS 7.0 were used as statistical tools, and exploratory factor analysis, confirmatory factor analysis, and multi-group analysis were conducted. In order to carry out a multi group analysis that decides whether the structure variables which shows the different effects of 6 service dimensions in Korean and Chinese groups is statistically valid, configural invariance, metric invariance, and structural invariance are tested in order. At the results of the tests, 3 out of 7 hypotheses were supported and other 4 hypotheses were denied. According to the study, 4 dimensions (Basic Benefit, Physical Environment, Policy, and additional convenience) were positively correlated with CS in Korea, and 3 dimensions (i.e. basic benefit, policy, additional convenience) were significant in China. However, the significance of the service-dimensions was turned out to be partially different in Korea and China. The Basic Benefit is more influential in deciding the level of CS in china than Korea, however Physical Aspect is more important factor in Korea. 'Policy dimension' did not make significant difference between two countries. In the 'additional convenience dimension', the differences in 'socio-economic factors' than in'cultural background' were considered as more important in Chinese consumers than Korean. Overall, the improvement of Service quality will be crucial factors to increase the level of CS in Chinese market same as Korean market. In addition, more emphases need to be placed on the service qualities of 'Basic Benefit' and 'additional convenience' dimensions in China. In particular, 'low price' and 'product diversity' that constitute 'Basic Benefit' are proved to be comparatively disadvantageous and weak points of Korean companies compared to global players, and thus the prompt strengthening those dimensions would be urgent for Korean retailers. Moreover, additional conveniences such as various tenants and complex service and entertaining area will be more important in China than in Korea. Besides, Applying advanced Korean Hypermaret`s customer policy to Chinese consumers will help to get higher reliability and to differentiate themselves to other competitors. However, as personal interaction, physical aspect, promotions were proved as not significant for the level of CS in China, Korean companies need to reconsider the priority order of resource allocations when they tap into Chinese market.

  • PDF

A Contemplation on Measures to Advance Logistics Centers (물류센터 선진화를 위한 발전 방안에 대한 소고)

  • Sun, Il-Suck;Lee, Won-Dong
    • Journal of Distribution Science
    • /
    • v.9 no.1
    • /
    • pp.17-27
    • /
    • 2011
  • As the world becomes more globalized, business competition becomes fiercer, while consumers' needs for less expensive quality products are on the increase. Business operations make an effort to secure a competitive edge in costs and services, and the logistics industry, that is, the industry operating the storing and transporting of goods, once thought to be an expense, begins to be considered as the third cash cow, a source of new income. Logistics centers are central to storage, loading and unloading of deliveries, packaging operations, and dispensing goods' information. As hubs for various deliveries, they also serve as a core infrastructure to smoothly coordinate manufacturing and selling, using varied information and operation systems. Logistics centers are increasingly on the rise as centers of business supply activities, growing beyond their previous role of primarily storing goods. They are no longer just facilities; they have become logistics strongholds that encompass various features from demand forecast to the regulation of supply, manufacturing, and sales by realizing SCM, taking into account marketability and the operation of service and products. However, despite these changes in logistics operations, some centers have been unable to shed their past roles as warehouses. For the continuous development of logistics centers, various measures would be needed, including a revision of current supporting policies, formulating effective management plans, and establishing systematic standards for founding, managing, and controlling logistics centers. To this end, the research explored previous studies on the use and effectiveness of logistics centers. From a theoretical perspective, an evaluation of the overall introduction, purposes, and transitions in the use of logistics centers found issues to ponder and suggested measures to promote and further advance logistics centers. First, a fact-finding survey to establish demand forecast and standardization is needed. As logistics newspapers predicted that after 2012 supply would exceed demand, causing rents to fall, the business environment for logistics centers has faltered. However, since there is a shortage of fact-finding surveys regarding actual demand for domestic logistic centers, it is hard to predict what the future holds for this industry. Accordingly, the first priority should be to get to the essence of the current market situation by conducting accurate domestic and international fact-finding surveys. Based on those, management and evaluation indicators should be developed to build the foundation for the consistent advancement of logistics centers. Second, many policies for logistics centers should be revised or developed. Above all, a guideline for fair trade between a shipper and a commercial logistics center should be enacted. Since there are no standards for fair trade between them, rampant unfair trades according to market practices have brought chaos to market orders, and now the logistics industry is confronting its own difficulties. Therefore, unfair trade cases that currently plague logistics centers should be gathered by the industry and fair trade guidelines should be established and implemented. In addition, restrictive employment regulations for foreign workers should be eased, and logistics centers should be charged industry rates for the use of electricity. Third, various measures should be taken to improve the management environment. First, we need to find out how to activate value-added logistics. Because the traditional purpose of logistics centers was storage and loading/unloading of goods, their profitability had a limit, and the need arose to find a new angle to create a value added service. Logistic centers have been perceived as support for a company's storage, manufacturing, and sales needs, not as creators of profits. The center's role in the company's economics has been lowering costs. However, as the logistics' management environment spiraled, along with its storage purpose, developing a new feature of profit creation should be a desirable goal, and to achieve that, value added logistics should be promoted. Logistics centers can also be improved through cost estimation. In the meantime, they have achieved some strides in facility development but have still fallen behind in others, particularly in management functioning. Lax management has been rampant because the industry has not developed a concept of cost estimation. The centers have since made an effort toward unification, standardization, and informatization while realizing cost reductions by establishing systems for effective management, but it has been hard to produce profits. Thus, there is an urgent need to estimate costs by determining a basic cost range for each division of work at logistics centers. This undertaking can be the first step to improving the ineffective aspects of how they operate. Ongoing research and constant efforts have been made to improve the level of effectiveness in the manufacturing industry, but studies on resource management in logistics centers are hardly enough. Thus, a plan to calculate the optimal level of resources necessary to operate a logistics center should be developed and implemented in management behavior, for example, by standardizing the hours of operation. If logistics centers, shippers, related trade groups, academic figures, and other experts could launch a committee to work with the government and maintain an ongoing relationship, the constraint and cooperation among members would help lead to coherent development plans for logistics centers. If the government continues its efforts to provide financial support, nurture professional workers, and maintain safety management, we can anticipate the continuous advancement of logistics centers.

  • PDF

DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA (한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발)

  • 박만배
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF