• Title/Summary/Keyword: incoherent holography

Search Result 22, Processing Time 0.021 seconds

Incoherent Triangular holography using Mercury Lamp (수은등을 이용한 인코히어런트 삼각 홀로그래피)

  • 김수길
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.144-148
    • /
    • 2000
  • We presented a modified triangular interferometer as an incoherent holography, which can eliminate bias and conjugate image problems of the conventional one. Also, to demonstrate the feasibility of incoherent holography, the formation of an incoherent hologram using a mercury lamp and its optical reconstruction were presented.

  • PDF

Recent Research on Self-interference Incoherent Digital Holography

  • Youngrok Kim;Ki-Hong Choi;Chihyun In;Keehoon Hong;Sung-Wook Min
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • This paper presents a brief introduction to self-interference incoherent digital holography (SIDH). Holography conducted under incoherent light conditions has various advantages over digital holography performed with a conventional coherent light source. We categorize the methods for SIDH, which divides the incident light into two waves and modulates them differently. We also explore various optical concepts and techniques for the implementation and advancement of SIDH. This review presents the system design, performance analysis, and improvement of SIDH, as well as recent applications of SIDH, including optical sectioning and deep-learning-based SIDH.

Incoherent Triangular Holography using Mercury Lamp (수은등을 이용한 인코히어런트 삼각 홀로그래피)

  • 김수길
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.1
    • /
    • pp.22-27
    • /
    • 2001
  • We presented a modified triangular interlerorreter as an incoherent holography, which can eliminate bias and conjugate image problems of the conventional one. Also, to demonstrate the feasibility of incoherent holograrphy, the formation of an incoherent hologram using a mercury lamp and its numerical and optical reconstructions were presented.sented.

  • PDF

Visualization of Multiple Incoherent Sources Using Nearfield Acoustic Holography (음향 홀로그래피를 이용한 다수의 완전 비상관 소음원들의 가시화)

  • 남경욱;김양한
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.922-927
    • /
    • 1999
  • The objective of this paper is to obtain the contribution of each source to the spectrum of pressure, when there are multiple incoherent sources in near-field acoustic holography. For this objective, we have to obtain signals very coherent to the input signals of the sources. To obtain the very coherent signals, many people have measured pressure signals in the vincinity of the sources. However, it is sometimes difficult to locate microphones near to the sources so that the signals are very coherent to the input signals. This paper proposed a method to obtain the very coherent signals by near-field acoustic holography. Therefore, the proposed method does not require the measurement of pressure near to each source. Simulation results for two incoherent monopole sources showed the possibility of the proposed method.

  • PDF

Removal of bias and conjugate image using the modified conoscopic holography (변형된 코노스코픽 홀로그래피를 이용한 바이어스와 공액영상의 제거)

  • Kim, Soo-Gil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.12
    • /
    • pp.22-27
    • /
    • 2015
  • Conoscopic holography, which consists of two linear polarizers and two wave plates, and an uniaxial crystal, is incoherent holographic technology for three-dimensional display. In the uniaxial crystal, the wave from object divides into extraordinary and ordinary waves and phase difference between two waves is caused by the different refractive index of two waves. Four intensity patterns, which are made by phase difference, are obtained using LCLV(liquid crystal light valve) and conoscopic holography system. By combining four intensity patterns, the complex hologram without bias and conjugate image. In this paper, we propose the optimized system, which consists of a wave plate and a linear polarizer, and uniaxial crystal. In the proposed system, it doesn't need LCLV. By adjusting the azimuth angle of a linear polarizer and a wave plate, we derive four intensity patterns in recording plane. We demonstrate theoretically that the complex hologram with bias and a conjugate image is obtained using the proposed system.

Analysis of Effect of Phase Error Sources of Polarization Components in Incoherent Triangular Holography

  • Kim, Soo-Gil
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.256-262
    • /
    • 2012
  • We derive the point-spread function of the reconstructed image from a point-source complex hologram, which includes phase error caused by polarization components, in the longitudinal direction of the point-spread function and analyze the effect of the error sources of polarization components having influence on image reconstruction of a point-source complex hologram in incoherent triangular holography.

Numerical reconstruction of Incoherent Holography using the triangular interferometer (삼각형 간섭계를 이용한 Incoherent 홀로그래피의 수치적 재생에 관한 연구)

  • Bae, You-Seok;Lee, Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.388-390
    • /
    • 1994
  • We are familiar with the holography in these days. For making holography the coherent sources like LASER are used in many fields. But coherent holography has many problems. Coherent holography needs many instrument for practical use like 3-D TV case. In solving the problem we use the non-coherent source. Nowadays many methods like conoscopic holo graphy using anisotropic crystal, shadow casting and interferometric systems are suggested. In this paper we make the hologram using the triangular interferometric systems. [1],[2],[3],[4]. We explain the afocal and double-afocal system which consists of the triangular interferometric system. The holography made in one point and two point cases is imaged on CCD camera and we handle the image data digitally for the reconstruction efficiently. In reconstructing the hologram the Fraunhofer diffraction theory is used. We adopt the rectangular aperture for the convenience of calculation. In the future we must reconstruct the perfect 3-Dimensional object by optical method. For this, we have many problems like resolution problem. We must solve these problem for perfect reconstruction.

  • PDF

Effect of Phase Error on the Lateral Resolution of Reconstruction Image in Incoherent Triangular Holography (인코히어런트 삼각 홀로그래피에서 위상오차가 횡축방향의 해상도에 미치는 영향에 관한 연구)

  • Kim, Soo-Gil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.1-6
    • /
    • 2013
  • It is introduced the phase error sources of a incoherent hologram in incoherent triangular holography and derived the reconstruction image of point-source including the phase error in the lateral direction. From the reconstruction image of point-source, we analyzed the effect of phase error on the lateral resolution. When the phase retardation errors and azimuth angle error of a wave plate and a polarizer range from 0 to $2{\pi}/15$, the normalized intensities of reconstructed images are down by about 0.1% and 2.3%, respectively.

A study on resolution analysis of incoherent trigangular holography (인코히어런트 삼각 홀로그래피의 해상도 분석에 관한 연구)

  • 김수길;김은수;이병호
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.2
    • /
    • pp.128-137
    • /
    • 1999
  • We found the point-spread function (PSF) including the recording and reconstruction systems of the modified triangular interferometer. We also derived the resolutions of the modified and Cochran's triangular interferometers, then the resolutions of both systems for amplification factor, wavelength, and hologram size were found and analyzed. Also, to demonstrate the feasibility of incoherent holography, the formation of an incoherent hologram using a mercury lamp and its optical reconstruction were presented.

  • PDF