• 제목/요약/키워드: inclined face

검색결과 48건 처리시간 0.021초

코와 턱의 위치 및 색상을 이용한 측면 얼굴 검출 (Side-View Fan Detection Using Both the Location of Nose and Chin and the Color of Image)

  • 송영준;장언동;박원배;서형석
    • 한국콘텐츠학회논문지
    • /
    • 제3권4호
    • /
    • pp.17-22
    • /
    • 2003
  • 본 논문에서는 하나 또는 그 이상의 얼굴, 기울어진 얼굴들이 존재하는 칼라 영상에 대해서 색상 및 코의 길이와 턱의 위치를 이용하여 측면 얼굴만을 검출하는 새로운 방법을 제안하였다. RGB 영상을 YCbCr 좌표계로 변환한 후, 피부색 정보를 이용하여 얼굴 후보 영역을 추출하였다. 추출된 후보 영역은 형태학적 필터링을 거치고 최종적으로 남게된 영역들은 레이블링된다. 또한 코의 돌출 부위의 특성을 이용하여 기울어진 얼굴 영상에 대한 기울기 보정을 하였다. 그리고 코 영역 부분의 수직 거리와 턱까지의 거리와 같은 지형적인 특성을 이용하여 수직축을 기준으로 좌우 45도 이내로 기울어진 측면 얼굴에 대해서도 강건하게 검출하였고 100개의 실험영상을 사용하여 92%의 검출율을 얻었다.

  • PDF

강지보재 최적 설치방향을 고려한 경사터널의 거동특성에 대한 수치해석적 연구 (A numerical study on the analysis of behavior characteristics of inclined tunnel considering the optimum direction of steel rib)

  • 박상찬;김성수;신영완;신휴성;김영근
    • 한국터널지하공간학회 논문집
    • /
    • 제10권3호
    • /
    • pp.245-256
    • /
    • 2008
  • 터널 주지보재의 하나인 강지보재는 굴착 후 숏크리트 또는 록볼트의 지보기능이 발휘되기까지 터널 굴착면의 안정을 도모하는데 매우 중요한 역할을 수행한다. 일반적으로 수평터널의 강지보재는 중력방향으로 설치되고 있으며 시공성 및 안정성 측면에서 모두 유리한 것으로 알려져 있다. 그러나 경사터널의 경우는 터널 벽면에 작용하는 주응력 방향과 중력방향이 서로 다르기 때문에 최적의 강지보재 설치방향은 수평터널에서의 중력방향과는 다를 수 있다. 본 연구에서는 수치해석 방법을 이용하여 경사터널 벽면에 작용하는 힘의 작용방향을 규명하였으며 그 방향이 최적의 강지보재 설치방향이 될 수 있다. 즉, 강지보재의 지보효율은 터널 변위가 발생하는 방향으로 저항하도록 설치하는 경우에 최대가 될 수 있다. 국내 터널설계기준에서 제안하고 있는 경사터널에서의 세 가지 강지보재 설치방향을 모델로 설정하여 단계별 해석을 통한 비교검토를 수행하였다. 연구결과 경사터널 벽면에서의 변위 발생각은 막장경사와 관계없이 모두 터널 굴착면에 수직한 방향과 유사한 각도로 발생하므로 경사터널에서의 강지보재는 터널 굴착면에 수직인 방향으로 설치하는 경우가 지보효율 측면에서 보다 유리한 것으로 검토되었다.

  • PDF

Research on the deformation characteristics and support methods of the cross-mining roadway floor influence by right-angle trapezoidal stope

  • Zhaoyi Zhang;Wei Zhang
    • Geomechanics and Engineering
    • /
    • 제37권3호
    • /
    • pp.293-306
    • /
    • 2024
  • Influenced by the alternating effects of dynamic and static pressure during the mining process of close range coal seams, the surrounding rock support of cross mining roadway is difficult and the deformation mechanism is complex, which has become an important problem affecting the safe and efficient production of coal mines. The paper takes the inclined longwall mining of the 10304 working face of Zhongheng coal mine as the engineering background, analyzes the key strata fracture mechanism of the large inclined right-angle trapezoidal mining field, explores the stress distribution characteristics and transmission law of the surrounding rock of the roadway affected by the mining of the inclined coal seam, and proposes a segmented and hierarchical support method for the cross mining roadway affected by the mining of the close range coal seam group. The research results indicate that based on the derived expressions for shear and tensile fracture of key strata, the ultimate pushing distance and ultimate suspended area of a right angle trapezoidal mining area can be calculated and obtained. Within the cross mining section, along the horizontal direction of the coal wall of the working face, the peak shear stress is located near the middle of the boundary. The cracks on the floor of the cross mining roadway gradually develop in an elliptical funnel shape from the shallow to the deep. The dual coupling support system composed of active anchor rod support and passive U-shaped steel shed support proposed in this article achieves effective control of the stability of cross mining roadways, which achieves effective control of floor by coupling active support and preventive passive support to improve the strength of the surrounding rock itself. The research results are of great significance for guiding the layout, support control, and safe mining of cross mining roadways, and to some extent, can further enrich and improve the relevant theories of roof movement and control.

이중으로 경사진 3차원 캐비티내 자연대류 열전달 특성에 관한 수치해석적 연구 (Numerical Investigation on Heat Transfer Characteristics for Natural Convection Flows in a Doubly-Inclined Cubical-Cavity)

  • 명현국
    • 대한기계학회논문집B
    • /
    • 제33권6호
    • /
    • pp.435-442
    • /
    • 2009
  • Three-dimensional heat transfer characteristics for natural convection flows are numerically investigated in the doubly-inclined cubical-cavity according to the variation of a newly defined orientation angle �� of the hot wall surface from horizontal plane at moderate Rayleigh numbers. Numerical simulations of laminar flows are conducted in the range of Rayleigh numbers($10^4{\leq}Ra{\leq}10^5$) and $0^{\circ}{\leq}{\alpha}90^{circ}$ with a solution code(PowerCFD) employing unstructured cell-centered method. Comparisons of the average Nusselt number at the cold face are made with benchmark solutions and experimental results found in the literature. It is found that the average Nusselt number at the cold wall has a maximum value around the specified orientation ${\alpha}$ at each Rayleigh number. Special attention is also paid to three-dimensional thermal characteristics in natural convection according to new orientation angles at Ra��= $1{\times}10^5$, in order to investigate a new additional heat transfer characteristic found in the range of above Ra = $6{\times}10^4$.

볼 베어링용 고무시일의 접촉력 해석에 관한 연구 (A Study on the Contact Force of Rubber Seals for Ball Bearings)

  • 김청균;전인기;최인혁
    • 대한기계학회논문집
    • /
    • 제16권12호
    • /
    • pp.2261-2267
    • /
    • 1992
  • 본 연구에서는 시일 립의 간섭량과 접촉력에 관련된 이론적 연구를 수행한다. 시일의 접촉면에서 축방향 접촉력이 크게 설계되면 시일 립 선단에서는 마찰과 마멸이 심하게 진행되어 시일수명을 크게 단출시킬 우려가 있고, 접촉력이 작으면 밀봉된 유 체의 누설유려가 증가되면서 볼과 레이스사이의 윤활상태를 나쁘게 하여 베어링 수명 을 크게 단축하는 결과를 초래하게 되므로 시일 립의 접촉력에 관련된 연구는 대단히 중요하다.

반복하중을 받는 철근콘크리트 보의 소성힌지 이동에 관한 실험적 연구 (An Experimental Study on the Relocating Plastic Hinging Zones of Reinforced Concrete Beams Subjected to Cyclic Loads)

  • 김윤일;최창식;천영수;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1989년도 가을 학술발표회 논문집
    • /
    • pp.77-82
    • /
    • 1989
  • In this paper an experimental approach of the relocation plastic hinging zones of nine reinforced concrete exterior beam-column subassemblages under cyclic loads was tried. The main parameters of the testing program were location of the plastic hinge, difference of the special reinforcement, inclined or intermediate layers of longitudinal reinforcement, applied maximum shear stress. The conclusions presented herein are based on the limited texts conducted. Inclined or intermediate layers of longitudinal reinforcement and extra top and bottom steel in the beam over a specific legnth can be used to move the beam plastic hinging zone away from the column face. But, for the use of intermediate layers of longitudinal reinforcement, sheat reinforcement detail need further investigation.

  • PDF

A finite element based approach to observe hydrodynamic pressure in reservoir adjacent to concrete gravity dam

  • Santosh Kumar, Das;Kalyan Kumar, Mandal;Arup Guha, Niyogi
    • Ocean Systems Engineering
    • /
    • 제12권4호
    • /
    • pp.385-402
    • /
    • 2022
  • This paper deals with the study of hydrodynamic pressure in reservoir adjacent to the concrete gravity dam subjected to dynamic excitation. Widely famous finite element method is used to discretize the reservoir domain for modelling purpose. Pressure is considered as nodal variable following Eulerian approach. A suitable nonreflecting boundary condition is applied at truncated face of reservoir to make the infinite reservoir to finite one for saving the computational cost. Thorough studies have been done on generation of hydrodynamic pressure in reservoir with variation of different geometrical properties. Velocity profile and hydrodynamic pressure are observed due to harmonic excitation for variation of inclination angle of dam reservoir interface. Effect of bottom slope angle and inclined length of reservoir bottom on hydrodynamic pressure coefficient of reservoir are also observed. There is significant increase in hydrodynamic pressure and distinct changes in velocity profile of reservoir are noticeable for change in inclination angle of dam reservoir interface. Change of bottom slope and inclined length of reservoir bottom are also governing factor for variation of hydrodynamic pressure in reservoir subjected to dynamic excitation.

Covariance patterns between ramus morphology and the rest of the face: A geometric morphometric study

  • Marietta Krusi;Demetrios J. Halazonetis;Theodore Eliades;Vasiliki Koretsi
    • 대한치과교정학회지
    • /
    • 제53권3호
    • /
    • pp.185-193
    • /
    • 2023
  • Objective: The growth and development of the mandible strongly depend on modeling changes occurring at its ramus. Here, we investigated covariance patterns between the morphology of the ramus and the rest of the face. Methods: Lateral cephalograms of 159 adults (55 males and 104 females) with no history of orthodontic treatment were collected. Geometric morphometrics with sliding semi-landmarks was used. The covariance between the ramus and face was investigated using a two-block partial least squares analysis (PLS). Sexual dimorphism and allometry were also assessed. Results: Differences in the divergence of the face and anteroposterior relationship of the jaws accounted for 24.1% and 21.6% of shape variation in the sample, respectively. Shape variation was greater in the sagittal plane for males than for females (30.7% vs. 17.4%), whereas variation in the vertical plane was similar for both sexes (23.7% for males and 25.4% for females). Size-related allometric differences between the sexes accounted for the shape variation to a maximum of 6% regarding the face. Regarding the covariation between the shapes of the ramus and the rest of the face, wider and shorter rami were associated with a decreased lower anterior facial height as well as a prognathic mandible and maxilla (PLS 1, 45.5% of the covariance). Additionally, a more posteriorly inclined ramus in the lower region was correlated with a Class II pattern and flat mandibular plane. Conclusions: The width, height, and inclination of the ramus were correlated with facial shape changes in the vertical and sagittal planes.

미기압파에 의한 터널 출구 소음 저감을 위한 고속철도 터널 형상 개선에 관한 연구 (A Study on Tunnel Entry Design Considering the Booming Noise Resulting from Micro-Pressure Wave)

  • 목재균;최강윤;유재석
    • 소음진동
    • /
    • 제7권6호
    • /
    • pp.959-966
    • /
    • 1997
  • In general, the booming noise intensity at tunnel exit is strongly related to the gradient of the compression wave front created by high speed train entering the tunnel. This paper presents some results in relation with the compression wave front produced when the high speed train enters a tunnel. Four kinds of tunnel entrance shape with real dimensions were studied to investigate the formation of compression wave front inside tunnel by train entering tunnel. Computations were carried out using three-dimensional compressible Euler equation with vanishing viscosity and conductivity of fluid. According to the results, the flow disturbances occured at tunnel entrance were eliminated by tunnel hood with same cross sectional area. The compression wave front is formed completely at 30-40m from tunnel entrance. The maximum pressure gradient of compression wave front is reduced by 29.8% for the inclined tunnel hood and reduced by 21.5% for the tunnel hood with holes at the top face with tunnel without hood. The length of the inclined hood is 15m and the length of the hood with holes is 20m.

  • PDF

미기압파에 의한 터널출구소음저감을 위한 고속철도 터널형상개선에 관한 연구 (A study on tunnel entry design considering the booming noise resulting from micro-pressure wave)

  • 목재균;최강윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.627-635
    • /
    • 1997
  • In general, the booming noise intensity at tunnel exit is strongly related to the gradient of the compression wave front created by high speed train entering the tunnel. This paper presents some results in relation with the compression wave front produced when the high speed train enters a tunnel. Four kinds of tunnel entrance shape with real dimensions were studied to investigate the formation of compression wave front inside tunnel by train entering tunnel. Computations were carried out using three-dimensional compressible Euler equation with vanishing viscosity and conductivity of fluid. According to the reslts, the flow disturbance occured at tunnel entrance were eliminated by tunnel hood with same cross sectional area. The compression wave front is formed completely at 30-40m from tunnel entrance. The maximum pressure gradient of compression wave front is reduced by 29.8% for the inclined tunnel hood and reduced by 21.5% for the tunnel hood with holes at the top face with tunnel without hood. The length of the inclined hood is 15m and the length of the hood with holes is 20m.

  • PDF